期刊文献+

BCK-代数的理想(Ⅲ) 被引量:3

Ideals in BCK-algebras (Ⅲ)
下载PDF
导出
摘要 一个(2,0)型代数【X;*,O】叫做BCK-代数,如果对任意的x,y,z∈X恒有:BCK-1.(x*y)*(x*z)【z*y;BCK-2.x*(x*y)【y;BCK-3.x【x;BCK-4.0【x;BCK-5.x【y和y【x蕴涵x=y。 This note is a continuation of the author's [4]. We give some important properties or ideals in BCK-algebras. Let<X; *, 0> be a BCK-algebra and I be a subset of X. I is said to be a positive implicative ideal if it satisfies (1). 0∈I and (2). (y * x) * z∈I and x * z∈I imply y * z∈I for all x, y, z∈X. I is said to be a commutative ideal if I satisfies: (1) and (3). (x * y)* z∈I and z∈I imply x * (y * (y * x))∈I for all x, y, z∈X. I is an implicative ideal if I satisfies: (1) and (4). (x * (y * x)) *z∈I and z∈I imply x∈I for all x, y, z∈X. Our main results are the following. Theorem 1. If an ideal I or BCK-algebra X is positive implicative (commutative, implicative), then all ideals including I are also positive implicative (commutative, implicative). Corollory. If zero ideal of BCK-algebra X is positive implicative (commutative, implicative), then all ideals of X are positive implicative (commutative, implicative), and so X is a positive implicative (commutative, implicative) BCK-algebra. Theorem 2. If I is an ideal of BCK-algebra X, then quotient algebra <X/I; *, C_0> is positive implicative (commutative, implicative) iff ideal I is positive implicative (commutative, implicative).
作者 孟杰
机构地区 西北大学数学系
出处 《纯粹数学与应用数学》 CSCD 1990年第2期33-37,共5页 Pure and Applied Mathematics
  • 相关文献

参考文献1

  • 1黄涵.关于BCK—代数的同态同构基本定理[J]宁夏大学学报(自然科学版),1981(01).

同被引文献22

  • 1詹建明,谭志松.BCK/BCI-代数的Ω-模糊点理想(英文)[J].模糊系统与数学,2005,19(2):54-57. 被引量:3
  • 2邹庭荣,肖云萍.关联BCK代数的P滤子、I滤子及BFI滤子[J].模糊系统与数学,2005,19(3):55-58. 被引量:4
  • 3徐扬.格蕴涵代数与BCK代数的关系[J].模糊系统与数学,1997,11(1):10-15. 被引量:10
  • 4孟杰.BCK-代数的理想[J]纯粹数学与应用数学,1986(00).
  • 5K Iseki.S Tanaka.Ideal theory of BCK-algebras. Mathematica Japonica . 1976
  • 6M A Chaudhry.Weakly positive implicative and weakly implicative BCI-algebras. Mathematica Japonica . 1990
  • 7K Iseki.On ideals in BCK-algebras.Math. Sem. Notes . 1975
  • 8C C Xi.On a class of BCI-algebras. Mathematica Japonica . 1990
  • 9胡庆平,井关清志.可结合的BCI代数[J]科学通报,1982(12).
  • 10Lei Tiande.p-radical andits basic properties of BCI-algebras. Mathematica Japonica . 1985

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部