期刊文献+

宽筛分颗粒高压热态最小流化速度的实验研究 被引量:3

Experiment study on minimum fluidization velocity in fluidized bed with wide particle size distribution at elevated pressure and high temperature
下载PDF
导出
摘要 在内径80 mm的加压热态流化床实验台上,以4种不同平均粒径的宽筛分颗粒为实验物料,研究了在压力(0.1~4.5 MPa)和温度(20~800℃)范围内实验物料的最小流化速度。实验结果表明:在相同的温度下,最小流化速度随压力的增加而减小。而在相同的压力下,温度对最小流化速度的影响随床料的种类的不同而有明显的差别。基于Ergun方程和床层受力分析,得到了最小流化速度的计算式,给出了高温高压宽筛分颗粒流化床最小流化速度合理计算步骤,并与其他研究者的关联式和实验结果进行了对比,结果表明本文提出的预测方法与实验结果吻合较好,相对误差在10%以内,为增压流化床反应器的设计和运行提供较可靠的参考依据。 An experimental study of the influence of pressure and temperature on minimum fluidization velocity was carried out in a fluidized bed with an inner diameter of 80ram in the range of operating absolute pressure 0. 1 ~ 4. 5 MPa and temperature 20 ~ 800 ℃ with four wide particle-size distributions of different mean diameters. The results show that at a given temperature, minimum fluidization velocity decreases with increasing pressure and that at a given pressure, the effect of temperature on minimum fluidization velocity is dependent on the particle type. Based on Ergun equation and bed stress analysis, an equation about minimum fluidization velocity is proposed, and then reasonable calculation steps about it at elevated pressure and temperature is given. The discrete degree between predicted minimum fluid- ization velocity and experimental results is in the range of 10 %. Moreover, the accuracy of it is higher than the corre- lations often employed in literature. It seems that the conclusion is useful for the design and operation of the pressured fluidized bed.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2012年第5期65-71,86,共8页 Journal of North China Electric Power University:Natural Science Edition
基金 国家高技术研究发展计划(863计划)专题课题(2009AA05Z310) 教育部新世纪优秀人才支持计划NCET(NCET-08-0770) 中央高校基本科研业务费专项资金资助(10QX38)
关键词 高温高压流化床 宽筛分 临界流化速度 计算模型 fluidized bed at elevated pressure and high temperature wide particle size distribution minimum fluid-ization velocity calculation model
  • 相关文献

参考文献15

二级参考文献47

  • 1樊越胜,邹峥,高巨宝,曹子栋.煤粉在富氧条件下燃烧特性的实验研究[J].中国电机工程学报,2005,25(24):118-121. 被引量:65
  • 2Chunbao Xu,J.-X. Zhu.EFFECTS OF GAS TYPE AND TEMPERATURE ON FINE PARTICLE FLUIDIZATION[J].China Particuology,2006,4(3):114-121. 被引量:6
  • 3黄群星,王飞,常瑞丽,严建华,岑可法.基于逆向蒙特卡罗法的煤粉炉内辐射能传递计算[J].中国电机工程学报,2007,27(8):88-93. 被引量:8
  • 4Pietro Barbucci. Enel strategy for zero emission power generation [C]//Beijing Symposium on Sino-Italy Cooperation on Clean Coal Technology and CCS, Beijing, 2008.
  • 5Soufiani A, Taine J. High temperature gas radiative property parameters of statistical narrow band model for H2O, CO2 and CO, and correlated k model for H2O and CO2[J]. International Journal of Heat and Mass Transfer, 1997, 40(4): 987-991.
  • 6Edwards D K, Balakrishnan A. Thermal radiation by combustion gases[J]. International Journal of Heat and Mass Transfer, 1997, 40(1): 987-991.
  • 7Schenker G N, Keller B. Line-by-line calculation of the absorption of infrared radiation by water vapor in a box-shaped enclosure filled with humid air[J]. International Journal of Heat and Mass Transfer, 1995, 38(17): 3127-3134.
  • 8Soufiani A, Djavdan E. A comparison between weighted sun of gray gases and statistical narrow band radiation models for combustion applications[J]. Combustion and Flame, 1994, 97(2): 240-250.
  • 9Marin O, Bukius R O. A simplified wide band model of the cumulative distribution function for water vapor[J]. International Journal of Heat and Mass Transfer, 1998, 41(19): 2877-2892.
  • 10Marin O, Bukius R O. A simplified wide band model of the cumulative distribution function for carbon dioxide[J]. International Journal of Heat andMass Transfer, 1998, 41(23): 3881-3897.

共引文献76

同被引文献35

  • 1武荣成,许光文.焦化过程煤调湿技术发展与应用[J].化工进展,2012,31(S1):149-153. 被引量:15
  • 2胡新亮.煤调湿技术及存在的问题[J].节能与环保,2006(9):31-32. 被引量:13
  • 3张先棹.冶金传输原理[M].北京:冶金工业出版社,1988..
  • 4国井大藏 列文斯比尔 华东石油学院上海化工设计院 译.流态化工程[M].北京:石油化学工业出版社,1977.29-30.
  • 5Rao T, Ram J V. Minimum fluidization velocities of mixtures of biomass and sands[J]. Energy, 2001, 26(6): 633-644.
  • 6Roche O, Gilbertson M A, Phillips J C, et al. The influence of particle size on the flow of initially fluidized powders[J]. Powder Technology, 2006, 166: 167-174.
  • 7Cui H P, Grace J R. Fluidization oF BIOMASS PARTICLes: A review of experimental multiphase flow aspects[J]. Chem Eng Sci, 2007, 62(1/2): 45-55.
  • 8Sun Q Q, Lu H L, Liu W T. Simulation and experiment of segregating/mixing of rice husk-sand mixture in a bubbling fluidized bed[J]. Fuel, 2005, 84(14/15): 1739-1748.
  • 9Liu Z E, Wang X, Tian Y J, et al. Basic study for coal moisture control integrating pneumatic classification technique[C]//Kim S D. New Paradigm in Fluidization Engineering. Daejeon, KOR: Engineering Conferences International, 2010:621-628.
  • 10Caicedo G R, Ruiz M G, Marquos J P, et al. Minimum fluidization velocities for gas-solid 2D beds[J]. Chemical Engineering and Processing, 2002, 41(9): 761-764.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部