期刊文献+

基于体积积分不变量的散乱点云数据特征点提取 被引量:3

Extracting Feature Points for Scattered Points Based on Volume Integral Invariant
下载PDF
导出
摘要 针对积分不变量不依赖网格拓扑结构的特性及体积积分不变量与平均曲率的内在联系,提出了一种基于平均曲率及体积积分不变量的散乱点云特征点提取方法。该算法采用4DShepard曲面估算点云曲率获得体积积分不变量,并基于体积积分不变量通过K-Means分类方法提取点云特征点。该算法只与点的个数和位置有关,实验结果表明,该算法不仅可以较快地提取特征点,而且表达点云边界特征点比较精确。 Based on the property of the integral invariant irrelevant to the meshes'topology and the inner relation- ship between the volume integral invariant and the mean-curvature, a method Was proposed to extract the feature points from scattered point sets based on the mean-curvature and the volume integral invariant. The algorithm in the present method used the global 4D Shepard surface to estimate the curvature of each point in the point cloud and it was only related to the numbers and the operations of the points cloud. Then the volume integral invariant was cal- culated by the given formula, and the feature points were extracted through the K-Means clustering algorithm. The experiments show that this algorithm has higher computing efficiency, and can express the boundary feature of the clouds more precisely.
出处 《机械科学与技术》 CSCD 北大核心 2012年第11期1855-1859,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(50905190)资助
关键词 特征点提取 点云曲率 积分不变量 K—Means feature point extraction curvature of point cloud integral invariant K-Means
  • 相关文献

参考文献15

  • 1Yongtae J, Kuiwon C. Automated feature-based registration for reverse engineering of human models[ J ]. Journal of Mechani. cal Science and Technology, 2005,19 ( 12 ) :2213 - 2223.
  • 2Rabbani T, Dijkman S. An integrated approach for modeling and global registration of point clouds [ J ]. Journal of Photogram- metry and Remote Sensing,2007,2 ( 61 ) : 355 - 370.
  • 3Yang M, Lee E. Segmentation of measured data using a paramet- ric quatric surface approximation [ J]. Computered Aided De- sign, 1999,31 (7) :449 -457.
  • 4Woo H, Kang E, Wang Sem-yung, et al. A new segmentation method for point cloud data[J]. International Journal of Ma- chine Tools and nanufacture,2002,42 (2) :167 - 168.
  • 5吕震,柯映林,孙庆,王军文,黄小平.反求工程中过渡曲面特征提取算法研究[J].计算机集成制造系统-CIMS,2003,9(2):154-157. 被引量:26
  • 6Huang J, Menq C H. Automatic data segmentation for geometric feature extraction from unorganized 3-D coordinate points [ J ]. IEEE Transactions on Robotics and Automation, 2001,17 ( 3 ) :268 - 279.
  • 7马骊溟,徐毅,李泽湘.基于高斯曲率极值点的散乱点云数据特征点提取[J].系统仿真学报,2008,20(9):2341-2344. 被引量:31
  • 8柯映林,陈曦.基于4D Shepard曲面的点云曲率估算[J].浙江大学学报(工学版),2005,39(6):761-764. 被引量:14
  • 9Duda R O, Hart P E, Stork D G. Pattern Classification [ M ]. Wiley Interscience, 2001.
  • 10Pottmann H, Wallner J, Huang Q X, Yang Y L. Integral invari- ants for robust geometry, processing[ J ]. Computer Aided Geo- metric Design, 2009,26( 1 ) :37 -60.

二级参考文献39

  • 1柯映林,单东日.基于边特征的点云数据区域分割[J].浙江大学学报(工学版),2005,39(3):377-380. 被引量:36
  • 2Madabhushi A, Metaxas D. Automatic boundary extraction of ultrasonic breast lesions. In:Mercer B ed. Biomedical Imaging, 2002 IEEE International Symposium on, Washington, 2002, Washington:Omni Press, 2002:601~604
  • 3Huang J, Menq C H. Combinatorial manifold mesh reconstruction and optimization from unorganized points with arbitrary topology. Computer-Aided Design, 2002, 34:149~165
  • 4Várady T, Martin R, Cox J. Reverse engineering of geo- metric models-an introduction. Computer-Aided Design, 1997, 29(4):255~268
  • 5VaRADY T, MARTIN R R, COX J. Reverse engineering of geometric models: an introduction [J]. Computer Aided Design, 1997, 29(4): 255-268.
  • 6FLYNN P J, JAIN A K. On reliable curvature estimation [A]. IEEE Conference on Pattern Recognition [C]. San Diego: IEEE, 1989: 110-116.
  • 7MEEK D, WALTON D. On surface normal and Gaussian curvature approximations given data sampled from a smooth surface [J]. Computer Aided Geometric Design, 2000, 17(6): 521-543.
  • 8SACCHI R, POLIAKOFF J F, THOMAS P D, et al. Curvature estimation for segmentation of triangulated surfaces [A]. proceedings of 3-D Digital Imaging and Modeling [C]. Ottawa: IEEE, 1999: 536-543.
  • 9ERNEST M S, SHANG Y W. Surface parametrization and curvature measurement of arbitrary 3-D objects: five practical methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(8): 833-839.
  • 10SUN W, BRADLEY C, ZHANG Y F, et al. Cloud data modeling employing a unified non-redundant triangular mesh [J]. Computer Aided Design, 2001, 33 (2): 183-193.

共引文献115

同被引文献17

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部