期刊文献+

基于Fermi架构的超声图像自动增益补偿并行算法

A Parallel Algorithm of Automatic Time Gain Compensation for Ultrasound Imaging Based on Fermi Architecture
原文传递
导出
摘要 在医学超声成像系统中由于超声波在人体组织内传播会发生衰减,需要对超声图像进行有效的增益补偿,使超声图像的显示效果更好。但大多数自动增益补偿算法在处理时涉及大量的复杂计算,成为临床实时成像系统中的一大性能提升瓶颈,为此提出了一种基于高性能并行计算平台Fermi架构图形处理单元(GPU)的自动增益补偿并行处理算法。本算法主要的处理流程有数据预处理、区域类型检测、组织强度计算、二次曲面拟合以及自适应增益补偿等部分,核心的并行算法设计包括了粗粒度的并行均值滤波、局部方差系数的并行计算、优化的矩阵转置并行实现以及基于LU分解的粗粒度的矩阵求逆的并行实现等方面。数据测试结果显示,与基于CPU的实现相比,采用Fermi架构的GPU处理不仅可以得到完全一致和较好的增益补偿效果,而且可以取得较大的加速效果,满足实时系统需求,对512×261的图像数据能够达到427帧/s的高帧率,速度提高了大约267倍。 Due to the acoustic attenuation in the human body, an efficient gain compensation on the ultrasound image is necessary for a better imaging quality in a medical ultrasound imaging system. The traditional manual adjustment method suffers some drawbacks, such as the difficulties in adjusting a special region, so it is very important to implement the Automatic Time Gain Compensation (ATGC) algorithm in the clinical ultrasound imaging system. Because of the massive computation involved in this ATGC technique, this problem becomes the bottleneck for a clinical real-time imaging system. In this paper, a new parallel algorithm of ATGC based on Fermi GPU (graphics processing unit) is presented. The main procedures of this algorithm include the pre-processing, the speckle detection, the tissue intensity computation, the 2-D surface fitting and the adaptive gain compensation. The key parallel algorithm includes a parallel box filter with coarse-grained, parallel local variance coefficient computation, the optimized parallel matrix transposition, the parallel matrix in'version based on the LU factorization in a coarse-grained parallel way. Test results not only show that the output of the graphics processing unit (GPU) is definitely the same as that of the CPU, but also demonstrate an obvious speedup by using the GPU, that is, with 427 frames per second for the image size (512×261), 267 times faster than the CPU implementation.
作者 何兴无 张霞
出处 《科技导报》 CAS CSCD 北大核心 2012年第31期61-65,共5页 Science & Technology Review
关键词 高性能并行计算 深度增益补偿 超声成像 图像并行处理算法 high performance parallel processing depth gain compensation ultrasound imaging parallel algorithm for image processing
  • 相关文献

参考文献10

  • 1Checkovich P. Time-gain control sharpens ultrasound [J]. Design News, 1998, 15(1): 103-104.
  • 2He P. Acoustic attenuation estimation for soft tissue from ultrasound echo envelope peaks[J]. IEEE Tra Ultra Ferroelec Freq Control, 1989, 36(2): 197-203.
  • 3Parker K J. Attenuation measurement uncertainties caused by speckle statistics[J]. J A cot Soc Amer, 1986, 80(3): 727-734.
  • 4Kuc R. Bounds on estimating the acoustic attenuation of small tissue region from reflected ultrasound signals [J]. Proc IEEE, 1985, 73(7): 1159-1168.
  • 5Li X Y, Liu I) C. Estimation of local attenuation anti its application to rationalized gain control [C]//Proceedings of International Conference on Bioinformatics and Biomedical Engineering. Wuhan: IEEE, 2007: 1521- 1524.
  • 6Tang M W, l,un F, Liu D C. Automatic time gain compensation in ultrasound imaging system[C]//Proceedings of International Conference on Bioinformatics and Biomedical Engineering. Beijing: IEEE, 2009: 732- 735.
  • 7NVIDIA Corporatian. CUDA programming guide, version 4.0 [M/OL]. [2012-04-16I. http://developer.downloadmvidia.eom/eomlmte/l)evZone/ docs/html/c/doc/CUDA C Programnfing-Guide.pdf.
  • 8夏春兰,石丹,刘东权.基于CUDA的超声B模式成像[J].计算机应用研究,2011,28(6):2011-2015. 被引量:16
  • 9范正娟,谭朝炜,刘东权.基于CUDA的彩色超声血流成像[J].计算机应用,2011,31(3):856-859. 被引量:8
  • 10NVIDIA Corporation. CUBLAS library, version 4.0 [M/OL]. [2012-02]. http://developer.dnwnload.nvidia.comhompute/DevZoneldoes/html/CUDAi braries/doc/C U B LAS-Library.pdf.

二级参考文献22

  • 1吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 2KASAI C, NAMEKAWA K. Real-time two-dimensional blood flow imaging using an autocorrelation technique [ J]. IEEE Transactions on Sonics Ultrasonic, 1985, 32(3) : 458 -464.
  • 3LIU DC, KIM J, SCHARDT M. Modified autocorrelation method compared with maximum entropy method and RF cross-correlation method as mean frequency estimator for Doppler ultrasound [ C]// Proceedings of the 1991 Conference on Ultrasonic Symposium. Washington, DC: IEEE Press, 1991:1285-1290.
  • 4BONNEFOUS O, PESQUE P. Time domain formulation of pulse- Doppler ultrasound and blood velocity estimation by cross correlation [J]. Ultrasonic Imaging, 1986, 8(2): 73-85.
  • 5BRANDS P J, HOEKS A P G, LEDOUX L A F, et al. A radio fre- quency domain complex cross-correlation model to estimate blood flow velocity and tissue motion by means of ultrasound [ J]. Ultra- sound in Medicine and Biology, 1997, 23(6): 911 -920.
  • 6NVIDIA CUDA Programming Guide 2.3 [ EB/OL]. [ 2009 - 08 - 26]. http://developer.download.nvidia.com/compute/euda/2_3/ toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3, pdf.
  • 7CHANG LIWEN, HSU K, LI P-C. Graphics processing unit based high frame rate color Doppler ultrasound processing [ J]. IEEE Transactions on Ultrasonic Ferroelectfics and Frequency Control, 2009, 56(9) : 1856 - 1860.
  • 8FAN ZHENGJUAN, SHI DAN, LIU D C. Optimized GPU frame- work for ultrasound color flow imaging [ C]// ICBBE 2010: Pro- ceedings of the 4th IEEE International Conference on Bioinformatics and Biomedical Engineering. Chengdu, China: IEEE Press, 2010: 1-4.
  • 9BAEK K R, BAE M H, PARK S B. A new aliasing extension meth- od for ultrasonic 2-dimensional pulsed Doppler systems [ J]. Ultra- sonic Imaging, 1989, 11(4): 233-244.
  • 10BJAERUM S, TORP H, KRISTOFFERSEN K. Clutter filter design for ultrasound color flow imaging [ J]. IEEE Transactions on Ultra- sonic Ferroelectrics and Frequency Control, 2002, 49( 2): 204 - 216.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部