期刊文献+

基于CSSD-DE通道选择算法的ECoG分类研究 被引量:2

CSSD-DE Channel Selection for ECoG Classification
下载PDF
导出
摘要 在脑机接口(BCI)的研究中,通道在提取脑电信息的过程中起着十分关键的作用。本研究提出基于共空域子空间分解-微分进化算法(CSSD-DE)的脑机接口通道选择方法,并且使用逻辑线性分类器进行分类。在对皮层脑电信号(ECoG)进行通道选择的过程中取得了使用少数通道就可以达到令人满意的分类效果。当最优通道个数为6,识别正确率达到93%,优于2005年脑机接口竞赛III数据集I的第一名的正确率(91%)。并提出将最大相关最小冗余度(mRMR)和支持向量机回归特征消去(SVM-RFE)算法应用于通道选择进行对比,mRMR算法得出最优通道个数为7,识别正确率为87%,SVM-RFE算法得出的最优通道个数为6,识别正确率为81%。 For brain computer interface (BCI), channels play a critical role in extracting brain electrical information. In this article, CSSD-DE (common spatial subspace decompositic,n-differential evolution algorithm) method was proposed for channel selection in brain computer interface. The logical linear classifier was used. For channel selection on ECoG (electrocorticographic signals) classification, the satisfactory classification effect was obtained only using a few channels. When the optimal channel number was 6, recognition accuracy could reach to 93%, superior to 91% accuracy of the topping one during the BCI Competition III dataset I. The mRMR (maximum related minimum redundancy) and SVM-RFE (support vector machine regression characteristic elimination) method are proposed for channel selection for comparison. For mRMR, when the optimal channel number was 7, recognition accuracy could reach to 87%. For SVM-RFE, when the optimal channel number was 6, recognition accuracy could reach to 81%.
作者 王金甲 尹涛
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2012年第5期712-719,共8页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(60504035 61074195) 河北自然科学基金(F2010001281 A2010001124)
关键词 脑机接口 通道选择 共空域子空间分解 微分进化算法 brain-computer interface (BCI) channel selection common spatial subspace decomposition differential evolution algorithm
  • 相关文献

参考文献25

  • 1Wolpaw JR, Birbaumer N, Heetderks WJ. Brain-computer interface technology. A review of the first intermational meeting [ J ]. IEEE Transactions Rehabilitation Engineering,2000,8 ( 2 ) : 164 - 173.
  • 2Toro C, Deusehl G, Thatcher R, et al. Even-related desynchronization and movement related cortical potentials on the ECoG and EEG [ J ]. Electroneneephalography and ClinicalNeurophysiology, 1994,93 (5) :380 - 389.
  • 3吕俊,谢胜利.基于运动想象的皮层脑电图频域模式滤波[J].华南理工大学学报(自然科学版),2008,36(5):101-105. 被引量:5
  • 4Leuthardt E, Schalk G, Wolpaw J, et al. A brain-computer interface using electrocorticographic signals in humans [ J ]. Neural Eng,2004,1:63 - 71.
  • 5Lalt N, Hinterberger T, Widman G, et al. Methods towards invasive human brain computer interface[ J]. Advances in Neural Information Processing System ( NIPS). 2005,17:737 - 744.
  • 6Grainmann B,Huggins J, Levine S,et al. Towards a direct brain interface based on human subdural recordings and wavelet packet analysis [ J ]. IEEE Trans Biomed Eng,2004,$1:954 - 962.
  • 7刘冲,赵海滨,李春胜,王宏.基于频带能量归一化和SVM-RFE的ECoG分类[J].仪器仪表学报,2011,32(3):534-539. 被引量:12
  • 8赵海滨,刘冲,喻春阳,王宏.利用频带能量和k近邻分类器进行皮层脑电图分类[J].计算机应用,2010,30(11):3105-3107. 被引量:1
  • 9毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 10Wei Qingguo,Lu Zongwu,Chen Kui,et al. Channel selection for optimizing feature extraction in an electrocorticogram-based brain- computer interface [ J ]. Journal of Clinical Neurophysiology. 2010,27(5) :321 -326.

二级参考文献215

共引文献235

同被引文献17

  • 1WOLPAW J R, BIRBAUMER N, MCFARLAND D J, et al. Brain-computer interfaces for communication and control[J]. Clin Neurophysiol, 2002, 113(6): 767-791.
  • 2HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proe R Soe Lond A, 1998, 454(1971): 903-995.
  • 3PANOULAS K I, HADJILEONTIADIS L J, PANAS S M. Hilbert-Huang Spectrum as a new field for the identification of EEG event related de-/synchronization for BCI applications [C]//30th Annual International Conference of the IEEE, Vancouver: 2008: 3832-3835.
  • 4LOONEY D, MANDIC D P. Multiscale image fusion using complex extensions of EMD[J]. , IEEE Trans Signal Proces, 2009, 57(4): 1626-1630.
  • 5TANAKA T, MANDIC D P. Complex empirical mode de- composition[J]. IEEE Signal Proces Lett, 2007, 14(2) : 101- 104.
  • 6RILLING G, FLANDRIN P, GONALVES P, et al. Bivari- ate empirical mode decomposition[J]. IEEE Signal Proces Lett, 2007, 14(12): 936-939.
  • 7REHMAN N, MANDIC D P. Empirical mode decomposition for trivariate signals [J]. IEEE Trans Signal Proces, 2010, 58(3) : 1059-1068.
  • 8REHMAN N, MANDIC D P. Multivariate empirical mode decomposition [J]. Proc R Soc A: Math, Phys Eng Sci, 2010, 466(2117): 1291-1302.
  • 9HUANGNE, WUMLC, LONGSR, etal. A confidence.limit for the empirical mode decomposition and Hilbert spec- tral analysis [J]. Proc R Soc Lond A.. Math, Phys Eng Sci, 2003, 459(2037) .. 2317-2345.
  • 10Cannegieter S C, Rosendaal F R, Briet E. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses[J]. Circulation, 1994, 89(2) : 635-641.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部