期刊文献+

人-机运动相容型下肢康复训练外骨骼机构的构型设计与分析 被引量:9

Configuration Design and Analysis of the Human-Machine Kinematically Compatible Type Exoskeleton Mechanism for Lower Limb Rehabilitation Training
下载PDF
导出
摘要 对人-机运动相容型下肢康复训练外骨骼机构的构型设计进行研究,根据下肢的生物骨骼模型和下假肢膝关节设计技术,建立与人体下肢运动功能接近的刚体骨骼模型。分析人-机关节运动属性差异和人-机连接位姿偏差对人-机运动相容性的影响,基于人-机闭链的自由度分析和在人-机连接环节中增置连接关节,提出一种人-机运动相容的下肢外骨骼机构构型,并对无连接位姿偏差和有联接位姿偏差的骨骼-机构联体模型进行了ADAMS运动仿真分析。结果表明,在人-机连接环节中增置连接关节后,可以避免因人-机关节运动属性差异和人-机连接位姿偏差导致的人-机运动干涉现象,实现外骨骼机构运动与人体下肢运动的完全相容。 The configuration design of human-machine kinematically compatible type exoskeleton mechanism for lower limb rehabilitation training is studied. According to the biological skeletal model of human lower limb and the knee joint design technique of artificial lower limb, the rigid-body skeletal model with approximate motion function of human lower limb was established. The influences of the kinematic property difference between human joints and machine joints as well as the human-machine connecting posture deviation on human-machine kinematic compatibility were investigated. Based on the DOF analysis of human-machine closed chain and adding connective joints into human-machine linking sub-chains, a human-machine kinematieally compatible type mechanism configuration of lower limb exoskeleton was proposed, and the ADAMS kinematic simulations of the skeletal-mechanism united models with or without human-machine connecting posture deviation were presented. The results showed that human-machine kinematic interference resulted from the kinematic property difference between human joints and machine joints as well as the human-machine connecting deviation can be avoided through adding connective joints into human-machine linking sub-chains, thereby the exoskeleton mechanism and human lower limb were kinematically complete compatible.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2012年第5期720-728,共9页 Chinese Journal of Biomedical Engineering
基金 北京市自然科学基金(3113026) 北京市先进制造技术重点实验室开放基金(0010005466909)
关键词 下肢康复训练 外骨骼机构 人-机运动相容性 机构构型 设计与分析 lower-limb rehabilitation training exoskeleton mechanism human-machine kinematic compatibility mechanism configuration design and analysis
  • 相关文献

参考文献16

  • 1Dollar AM, Herr H. Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art [ J]. IEEE Trans on Robotics and Automation, 2008, 24( 1 ) : 144 - 158.
  • 2Yang Chanjun, Zhang Jiafan, Chen Ying, et al. A review of exoskeleton-type systems and their key technologies [ J]. Journal of Mechanical Engineering Science, 2008, 222 ( 8 ) : 1599 - 1612.
  • 3Agrawal SK, Banala SK, Mankala K, et al. Exoskeletons for gait assistance and training of the motor impaired [ C] //Driessen B, Herder J, Gelderblom GJ, eds. Proceedings of 2007 IEEE International Conference on Rehabilitation Robotics. New Jersey: IEEE Computer Society, 2007 : 1108 - 1113.
  • 4Jezernik S, Colombo G, Keller T, et al. Robotic orthosis Lokomat: a rehabilitation and research tool [ J ]. Neuromodulation, 2003, 6(2) : 108 - 115.
  • 5Feng Zhiguo, Qian Jinwu, Zhang Yanan, et al. Biomechanical design of the powered gait orthosis [ C ] //Liu PX, Ming Aiguo, eds. Proceedings of 2007 IEEE International Conference on Robotics and Biomimetics. New Jersey : IEEE Computer Society, 2008 : 1698 - 1702.
  • 6Veneman JF, Kruidhof R, Hekman EEG, et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation [ J ]. IEEE Trans on Neural Systems and Rehabilitation Engineering, 2007, 15 (3) : 379 - 386.
  • 7Colombo G., Jorg M, Dietz V. Driven gait orthosis to do locomotor training of paraplegic patients [ C] //Enderle JD, eds. Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. New Jersey: IEEE, 2000 : 23 - 28.
  • 8Colombo G., Joerg M, Schreier R. Treadmill training of paraplegic patients using a robotic orthosis [ J ]. Journal of Rehabilitation Research and Development, 2000,37 (6) : 693 - 700.
  • 9Mohammed S, Amirat Y. Towards intelligent lower limb wearable robots: challenges and perspectives-state of the art [ C ] // Kongprawechnon W, Ming Aiguo, eds. 2008 IEEE International Conference on Robotics and Biomechanics. New Jersey: IEEE Computer Society, 2008:312-317.
  • 10Hidler JM, Wall AE. Alterations in muscle activation patterns during robot assisted walking [J]. Clinical Biomechanics, 2005, 20(1) :184 -193.

共引文献5

同被引文献51

  • 1张金宝.柔性外骨骼人机一体化智能技术研究[J].自动化与仪器仪表,2015(12):235-236. 被引量:1
  • 2石芝喜,刘四文,唐丹,欧阳亚涛,王俊.四种截瘫步行矫形器在脊髓损伤患者中的应用[J].中国康复医学杂志,2007,22(4):382-384. 被引量:11
  • 3孙嘉利,唐丹,欧阳亚涛,钟世镇.重心移动式步行矫形器对截瘫患者步行功能的影响[J].中国组织工程研究与临床康复,2007,11(13):2437-2440. 被引量:4
  • 4孙嘉利,欧阳亚涛,唐丹,钟世镇.截瘫步行器对截瘫患者日常生活活动能力的影响[J].中国康复医学杂志,2007,22(7):609-611. 被引量:6
  • 5BLEEKE G, HEEG M, NIEL V H. Ambulation with the reciprocating gait orthosis. Experience in 15 children with myelomeningocele or paraplegia[J]. Acta Orthopaedica Scandinavica, 1997, 68(5): 403-407.
  • 6IJZERMAN M J, BAARDMAN G, HERMENS H J. The influence of the reciprocal cable linkage in the advanced reciprocating gait orthosis on paraplegic gait performance[J]. Prosthetics and Orthotic International, 1997, 21(1): 52-61.
  • 7MIRBAGHERI M M, NIU X, KINDIG M, et al. The effects of locomotor training with a robotic-gait orthosis (Lokomat) on neuromuscular properties in persons with chronic SCI[C]// 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), August 28 - September 1, 2012, San Diego, CA. IEEE, 2012: 3854-3857.
  • 8DUSCHAU W A, BRUNSCH T, LUNENBURGER L, et al. Adaptive support for patient-cooperative gait rehabilitation with the lokomat[C]// 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems Acropolis Conventin Center, September 22-26, 2008, Nice, France. IEEE, 2008: 2357-2361.
  • 9BANALA S K, AGRAWAL S K, SCHOLZ J P. Active leg exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients[C]// Proceedings of the 2007IEEE 10th International Conference on Rehabilitation Robotics, June 12-15, 2007, Noordwijk, Netherlands. IEEE, 2007: 401-407.
  • 10BANALA SK, AGRAWAL S K, KIM S H, et al. Novel gait adaptation and neuromotor training results using an active leg exoskeleton[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(2): 216-225.

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部