期刊文献+

碳纳米管在炭纤维表面的可控自组装 被引量:1

Controllable selforganization of carbon nanotubes on the surface of carbon fiber
原文传递
导出
摘要 采用催化化学气相沉积法将碳纳米管(CNTs)原位生长于炭纤维(CF)表面并自组装成不同形貌的CNTs/CF杂化结构。使用扫描电子显微镜、拉曼光谱仪对制备的纳米/微米杂化结构进行微观形貌分析和结构表征。结果显示,随着温度的升高,碳纳米管在炭纤维表面由均匀分布状态转变为取向生长状态,并且长度及石墨化程度均不断增加。结合碳纳米管结构参数的变化,使用纳米悬臂梁模型解释了这一杂化结构的形成机理。模型分析表明,杂化结构的形貌转变是由不同温度下在炭纤维表面生长的碳纳米管的结构参数不同所造成的,因此可以通过调整相关结构参数控制碳纳米管在炭纤维表面的自组装过程。 Using catalytic chemical vapor deposition method,carbon nanotubes(CNTs) was synthetized in situ growth on the surface of carbon fiber(CF) to form various morphologies of CNTs/CF hybrid structures.Then,the morphology and structure characteristics of the nano/micro hybrid structures were analyzed using scanning electronic microscopy and Raman microscopy,which indicated that with the increase of the temperature,CNTs growth on surface of CF transformed from uniform distributions to directional distributions.The length and graphitization of CNTs were also increased in this process.Then,the formation process of nano/micro hybrid structures was illustrated based on a nano cantilever model,which revealed that the morphology variation of nano/micro hybrid structures was caused by the changing of the CNT structure parameters.Hence,the CNT self organization process on the CF surface is controllable by adjusting the CNT structure parameters.
作者 李昊 李铁虎
出处 《炭素技术》 CAS CSCD 北大核心 2012年第5期1-4,共4页 Carbon Techniques
基金 国家自然科学基金(50472081) 西北工业大学博士论文创新基金(CX200607)
关键词 碳纳米管 炭纤维 自组装 杂化结构 Carbon nanotubes carbon fiber self organization hybrid structures
  • 相关文献

参考文献13

  • 1Hao Chen, Ajit Roy, Jong-beom Baek, et al. Controlled growth and modification of vertically-aligned carbon nan- otubes for muhifunctional applications [J]. Materials Sci-enee and Engineering: R,22,2010, 70(3-6): 63-91.
  • 2A Patil, R Vaia, L Dai. Surface modification of aligned carbon nanotube arrays for electron emitting application [J]. Synthetic Metals, 2005, 154: 229-232.
  • 3Anastasios John Hart, Alexander H Slocum, Laure royer. Growth of conformal single-walled carbon nanotube films from Mo/Fe/A1203 deposited by electron beam evaporation [J].Carbon, 2006, 44: 348-359.
  • 4Aldo R Boccaccini, Johann Cho, Judith A, et al. Roether, Electrophoretic deposition of carbon nanotubes [J]. Carbon, 2006, 44: 3149-3160.
  • 5Jiawen Xiong, Zhen Zheng, Xiumin Qin, et al. The thermal and mechanical properties of a polyurethane/multi- walled carbon nanotube composite [J]. Carbon, 2006, 44: 2701-2707.
  • 6Tomokazu Yokoi, Sho-ichi Iwamatsu, Shin-ichi Komai, et al. Chemical modification of carbon nanotubes with organic hydrazines [J]. Carbon, 2005, 43: 2869-2874.
  • 7Bozlar M, He D, Bai J, et al. Advanced carbon nanotube microarchitectures for enhanced thermal conduction at ultra-low mass fraction in polymer composites [J]. Advanced Materials, 2009, 22: 1564-1568.
  • 8Ci L, Bai J. Novel micro/nanoscale hybrid reinforcement: multiwalled carbon nanotubes on SiC particles [J]. Advanced Materials, 2004, 16: 2021-2024.
  • 9Melissa Paradise, Tarun Goswami. Carbon nanotubes - Production and industrial applications [J]. Materials & Design, 2007, 28: 1477-1489.
  • 10Lu Zhang, Feng Li. Synthesis of carbon nanotubes/metal oxide composites over layered double hydroxides and ap- plication in electrooxidation of ethanol [J]. Applied Clay Science, 2010, 50: 64-72.

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部