期刊文献+

基于模糊聚类的改进的模糊关联规则挖掘算法(英文) 被引量:5

An Improvement of Fuzzy Association Rules Mining Algorithm Based on Fuzzy Clustering
下载PDF
导出
摘要 文中提出一种新的方法通过使用模糊C均值对原始数据集进行预处理操作,通过这个操作可以把定量属性值转换为二进制值,继而就会得到原始数据集的模糊版本(由模糊记录和模糊属性组成)。另外,文中又提出了一种基于模糊Apriori算法的快速提取规则的算法,这种算法是利用模糊聚类从先前得到的原始数据集的模糊版本中提取模糊频繁项集从而可以得到模糊关联规则。在文章的最后,实验结果显示了提出的新算法在处理大型数据集时在挖掘时间上要优于传统的Apriori算法。对大型数据库来说,该算法在实用性和可用性上面都有很好的发展前景。 In this paper, propose a methodology by doing pre-processing the original dataset using FCM which can convert quantitative values of attributes to binary values, and then get a fuzzy version I with fuzzy records and fuzzy attributes } of the original dataset. Moreo- ver,prasent a fast algorithm based on the fuzzy Apriori algorithm for rule extraction utilizing fuzzy clustering ( FAFC ) for extracting fuzzy frequent itemsets and fuzzy association rules from the fuzzy version of the original dataset. Eventually, experiments show that the FAFC algorithm outperforms the traditional Apriori algorithm on computing time for huge database. And for huge dataset, the algorithm presented in this paper is found to be promising in terms of practicability and availability.
作者 李雷 崔岩
出处 《计算机技术与发展》 2012年第11期18-21,26,共5页 Computer Technology and Development
基金 国家自然科学基金项目(61070234) 江苏省高校自然科学基金项目(04KJB110097,08KJB520023) 南京邮电大学攀登计划项目(NY207064)
关键词 预处理 模糊聚类 模糊C均值 模糊Apriori算法 数据挖掘 pre-processing fuzzy clustering FCM fuzzy Apriori algorithm data mining
  • 相关文献

参考文献11

  • 1韩家炜,堪博,范明.数据挖掘概念与技术[M].孟小峰,译.北京:机械工业出版社,2007.223-258.
  • 2Yue S,Tsang E, Yeung D, et al. Mining fuzzy association rules with weighted items[ C]//Proceedings of the IEEE interna- ti0nal conference on systems, man and cybernetics. [ s. I. ] : Is. n. ] ,2000:1906-1911.
  • 3Watanabe T. An Improvement of Fuzzy Association Rules Min- ing Algorithm Based on Redundancy of Rules[ C ]//2010 2nd International Symposium on Aware Computing. [ s. 1. ] : [ s. n. ] ,2010:68-73.
  • 4孙晓霞,刘晓霞,谢倩茹.模糊C-均值(FCM)聚类算法的实现[J].计算机应用与软件,2008,25(3):48-50. 被引量:34
  • 5李雷,罗红旗,丁亚丽.一种改进的模糊C均值聚类算法[J].计算机技术与发展,2009,19(12):71-73. 被引量:25
  • 6Mangatampalli A, Pudi V. Fuzzy Association Rule Mining Al- gorithm for Fast and Efficient Performance on Very Large Datasets [ C ]//IEEE International Conference on Fuzzy Syetem. [ s. 1. ]: [ s. n. ] ,2009:20-24.
  • 7Lee Y C, Hong T P, Wang T C. Mining Fuzzy Multiple-level Association Rules under Multiple Minimum Supports [ C]// Proc. of the 2006 IEEE International Conference on Systems, Man and Cybernetics. [s. 1. ]: [s. n. ] ,2006:4112-4117.
  • 8罗军生,李永忠,杜晓.基于模糊C-均值聚类算法的入侵检测[J].计算机技术与发展,2008,18(1):178-180. 被引量:21
  • 9吴瑛,王秋生.模糊C均值聚类算法在Web使用挖掘上的应用研究[J].计算机技术与发展,2008,18(6):32-35. 被引量:9
  • 10吴正龙,熊范纶,滕明贵.基于模糊聚类的模糊关联规则挖掘[J].小型微型计算机系统,2004,25(7):1295-1297. 被引量:6

二级参考文献30

  • 1钮永莉,陈水利.模糊C均值算法的改进[J].模糊系统与数学,2004,18(z1):304-308. 被引量:12
  • 2宫改云,高新波,伍忠东.FCM聚类算法中模糊加权指数m的优选方法[J].模糊系统与数学,2005,19(1):143-148. 被引量:81
  • 3杜家强,韩其睿,王科,杜家兴.Web日志中用户频繁路径快速挖掘算法[J].计算机工程与应用,2005,41(22):164-167. 被引量:12
  • 4Li Maik Junjie,Ng Michael K, Cheung Yiu - ming, et al. Agglomerative Fuzzy K - Means Clustering Algorithm with Selection of Number of Clusters [ J ]. IEEE Trans. Knowledge and Data Engineering,2008,20 : 1519 - 1534.
  • 5Ruspini E R. A New Approach to Clustering[ J ]. Information Control, 1969,19 : 22 - 32.
  • 6Bezdek J C. A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms[J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1980,2 : 1 - 8.
  • 7Miyarnoto S, Mukaidono M. Fuzzy c - means as a Regularization and Maximum Entropy Approach [ C ]//Prec. Seventh Int' 1 Fuzzy Systems Assoc. World Congress ( IFSA ' 97 ). [ s.l. ] Is. n. ] ,1997:86 -92.
  • 8Han Jiawei, Kamber M. Data Mining: Concepts and Techniques[M]. Los Altos, CA: Morgan Kaufmann Publishers, 2001.
  • 9[1]Agrawal R, Imielinski T and Swami A. Mining association rules between sets of items in large databases[C]. In: SIGMOD, Washington D.C., May 1993, 207-216.
  • 10[2]Ishibuchi H, Nakashima T and Yamamoto T. Fuzzy association rules for handling continuous attributes[M]. ISIE 2001, Pusan, Korea.

共引文献117

同被引文献37

  • 1张大踪,杨涛,魏东梅.无线传感器网络低功耗设计综述[J].传感器与微系统,2006,25(5):10-14. 被引量:51
  • 2崔晓军,薛永生.基于日历的时序关联规则挖掘算法[J].计算机应用,2006,26(8):1898-1899. 被引量:5
  • 3K Y Fung, et al. A multi-objective genetic algorithm approach to rule mining for affeetive product design [ J ]. Expert Systems with Applications, 2012,39 ( 8 ) :7411-7419.
  • 4D Liu, et al. A macro-evolutionary multi-objective immune algo- rithm with application to optimal allocation of water resources in Dongjiang River basins, South China[ J]. Stochastic Environmen- tal Research and Risk Assessment, 2012,26(4) :491-507.
  • 5Y Jiang, J Jiang, Y Zhang. A Novel Fuzzy Muhiobjective Model Using Adaptive Genetic Algorithm Based on Cloud Theory for Serv- ice Restoration of Shipboard Power Systems [ J ]. Power Systems, IEEE Transactions on, 2012, 27 ( 2 ) :612-620.
  • 6J Pei, J Han, B Mortazavi-Asl, J Wang, H Pinto, Q Chen, U Dayal and M Hsu. Mining Sequential Patterns by Pattern-Growth: The Prefix Span Approach [ J ]. IEEE Transactions on Knowledge and Data Engineering, 16-11, 2004:1424-1440.
  • 7N D Thuan. Mining Cyclic Association Rules in Temporal Database [ J]. The Journal Science and technology development, Viemam, 7, 8, Springer Netherlands, 2004 : 12-19.
  • 8Chien Y W C,Chen Y L.Mining associative classification rules with stock trading data-A GA-based method[J].Knowledge-Based Systems,2010,23(6):605-614.
  • 9Mc Auley A,Sinkar K,Kant L,et al.Tuning of reinforcement learning parameters applied to OLSR using a cognitive network design tool[C]//Wireless Communications and Networking Conference(WCNC),2012,2786-2791.
  • 10Li W,Han J,Pei J.CMAR:Accurate and efficient classification based on multiple class-association rules[C]//1st IEEE international conference on data mining San Jose,CA,USA,2009,43(5):233-241.

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部