期刊文献+

基于蜂群优化模糊聚类的遥感图像变化检测 被引量:1

Change Detection in Remote Sensing Images Based on the Fuzzy Clustering Algorithm and Artificial Bee Colony Optimization
下载PDF
导出
摘要 针对模糊聚类算法容易陷入局部最优,结合人工蜂群算法的全局最优性,提出一种基于蜂群优化模糊C均值聚类的新算法,并将此算法应用到遥感图像的变化检测中。利用差值图和比值图融合的方法得出多时相遥感图像的差异图,在对差异图像进行模糊聚类生成变化类和未变化类的同时,利用人工蜂群算法对差异图进行全局搜索,较大程度地避免FCM算法陷入局部最优,也降低了FCM算法对初始解的敏感度。实验结果表明,新算法比FCM分类准确、效率更高。 In order to overcome the local optimization of the fuzzy clustering algorithm,an artificial bee colony based on fuzzy algorithm combined with the global optimization of the bee colony algorithm is proposed for change detection in remote sensing.Ratio figure and difference figure fusion method is chosen to generate the difference image (DI),and then the fuzzy clustering algorithm is adopted to recover the changed and unchanged regions of the DI by constructing two clusters,where the artificial bee colony algorithm is introduced to avoid the local minimum problems of FCM and reduce the sensitivity of the initialization values of FCM.Simulation results show the new algorithm is more robust and efficient.
作者 贾彩杰
出处 《电子科技》 2012年第11期11-14,共4页 Electronic Science and Technology
关键词 模糊C均值聚类 人工蜂群算法 遥感图像 fuzzy clustering artificial bee colony algorithm remote sensing
  • 相关文献

参考文献10

  • 1CIHLAR J, PULTZ J T, GRAY A L. Change detection with synthetic aperture radar [ J]. International Journal or Remote Sensing. 1992,13 ( 3 ) :401 - 414.
  • 2HAME-T, HEILER I, SAN J. An unsupervised change detec- tion and recognitionsystem for forestry [ J]. International Journal of Remote Sensing, 1998,19 (6) : 1079 - 1099.
  • 3ZADEH L A. Fuzzy sets [ j ]. Information and Control, 1965 (8) :338 -353.
  • 4DuNN J C. A fuzzy relative relative of the ISO DATA process and its use in detecting compact well separated clusters [ J ]. Journal of Cybernetics, 1974,3 ( 3 ) :32 - 57.
  • 5BEZDEK J C. Pattern recognition with fuzzy objective func- tion algorithms [ M ]. New York : Plenum Press, 1981.
  • 6GHOSH S, MISHRA N S, GHOSH A. Unsupervised change detection of remotely sensed images using fuzzy clustering [ C]. International Conference on Advances in Pattern Rec- ognition, 2009,9 : 385 - 388.
  • 7KARABOGA D. An idea based on honey bee swarm for nu- merical optimization [ R]. Ultra: Erciyes University, Engi- neering Faculty, Computer Engineering Department ,2005.
  • 8赵小强,张守明.基于人工蜂群的模糊聚类算法[J].兰州理工大学学报,2010,36(5):79-82. 被引量:6
  • 9GOLDBERBG D E. Genetic algorithms in search [ C ]. Opti- mization and Machine Learning. Addison - Wesley, Reading, 1989.
  • 10GHOSH A, MISHRA N S, GHOSH S. Fuzzy clustering algo- rithms for unsupervised change detection in remote sensing images [ J ]. Information Sciences, 2011,181 ( 3 ) :699 - 715.

二级参考文献9

共引文献5

同被引文献25

  • 1刘小平,黎夏.从高维特征空间中获取元胞自动机的非线性转换规则[J].地理学报,2006,61(6):663-672. 被引量:37
  • 2杨青生,黎夏.基于支持向量机的元胞自动机及土地利用变化模拟[J].遥感学报,2006,10(6):836-846. 被引量:45
  • 3刘小平,黎夏,叶嘉安,何晋强,陶嘉.利用蚁群智能挖掘地理元胞自动机的转换规则[J].中国科学(D辑),2007,37(6):824-834. 被引量:56
  • 4邵景安,李阳兵,魏朝富,谢德体.区域土地利用变化驱动力研究前景展望[J].地球科学进展,2007,22(8):798-809. 被引量:82
  • 5Verburg P H,Soepboer W,Veldkamp A et al.Modeling the spatialdynamics of regional land use:the CLUE-S model[J].Environ-mental management,2002,30(3):391 -405.
  • 6Li X,Yeh A G O.Modelling sustainable urban development bythe integration of constrained cellular automata and GIS[J].In-temational Journal of Geographical Information Science,2000,14(2):131-152.
  • 7Karaboga D. An idea based on honey bee swarm for numericaloptimization[R] .Technical report-tx06, Erciyes university, engi-neering faculty, computer engineering department,2005.
  • 8Karaboga D, Akay B. A survey:algorithms simulating bee swarmintelligence[J]. Artificial Intelligence Review, 2009,31(1-4):61-85.
  • 9Karaboga D,Akay B.A modified artificial bee colony (ABC) al-gorithm for constrained optimization problems[J].Applied SoftComputing,2011,11(3):3021-3031.
  • 10Marinaki M,Marinakis Y,Zopounidis C.Honey bees mating opti-mization algorithm for financial classification prob!ems[J].Ap-plied Soft Computing,2010,10(3):806-812.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部