期刊文献+

一类加权半线性特征值问题正解的存在唯一性

Existence and uniqueness of positive solutions for a class of weight semilinear eigenvalue problems
下载PDF
导出
摘要 研究一类带有次线性增长条件的椭圆型特征值问题正解的存在性、唯一性和稳定性.基于分析技巧和稳定性理论,在一些恰当的假设条件下,得到了该问题存在唯一正解的参数区间且给出了解的全局结构. This paper concerns with the existence,uniqueness and stability of positive solutions of an elliptic eigenvalue problem with sublinear nonlinearity.Under some suitable assumptions,the existence of an intervals of positive real parameter is obtained,for which the above problem admits a unique positive solution.A complete description of the global structure of positive solution is also given.The proofs of our main results are based upon bifurcation techniques and stability analysis.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2012年第6期13-16,21,共5页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(11126296 11261052) 西北师范大学青年基金资助项目(NWNU-LKQN-10-21)
关键词 椭圆型特征值问题 隐函数定理 正解 分歧 唯一性 elliptic eigenvalue problem implicit function theorem positive solution bifurcation uniqueness
  • 相关文献

参考文献12

  • 1AMANN H. Fixed point equations and nonlineareigenvalue problems in ordered Banach spaces [J].SIAM Rev, 1976,18: 620-709.
  • 2COHEN DS,LAESTCH T W. Nonlinear boundaryvalue problems suggested by chemical reactor theory[J]. J Differential Equations , 1970,7 : 217-226.
  • 3OUYANG T,SHI J. Exact multiplicity of positivesolutions for a class of semilinear problem U [J]. JDifferential Equations, 1999,158(1) : 94-151.
  • 4SHI J, SHIVAJI R. Global bifurcation for concavesemipositon problems [ C ] //GOLESTEIN G R,NAGEL R, ROMANELLI S. Advances inEvolution Equations : Proceedings in Honor of J AGoldstein’s 60th Birthday. Basel: Marcel DekkerInc, 2003: 385-398.
  • 5LIONS P L. On the existence of positive solutions ofsemilinear elliptic equations[J]. SIAM Rev, 1982,24: 441-467.
  • 6AMBROSETTI A, MALCHIODI A. NonlinearAnalysis and Semilinear Elliptic Problem [ M ].Cambridge: Cambridge University Press,2007.
  • 7LOPEZ-GOMEZ J. The maximum principle and theexistence of principal eigenvalues for some linearweighted boundary value problems [ J ]. JDifferential Equations, 1996,127 : 263-294.
  • 8CRANDALL M G,RABINOWITZ P H.Bifurcation from simple eigenvalues [ J ]. JFunctional Analysis . 1971,8 : 321-340.
  • 9SHI J. WANG X. On global bifurcation for quasilinearelliptic systems on bounded domains[J]. J DifferentialEquations,2009, 246(7): 2788-2812.
  • 10SHI J. Blow up points of solution curves for asemilinear problem [J]. Topo Meth Nonl Anal,2000,15(2) : 251-266.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部