摘要
考虑一类变系数分数阶微分方程的数值解.将Haar小波与算子矩阵思想有效结合,并对变系数进行恰当的离散,将变系数分数阶微分方程转化为线性代数方程组,使得计算更简便,并证明了该算法的收敛性.最后通过数值算例验证了方法的有效性.
A wavelet method to the numerical solution for a class of fractional differential equation with variable coefficients is proposed,which combining Haar wavelet and operational matrix together and discreting the coefficients efficaciously.The original problem is translated into a system of algebraic equations and the computation become convenient.The convergence of this method is given.The numerical examples show that the method is effective.
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2012年第6期17-21,共5页
Journal of Northwest Normal University(Natural Science)
基金
河北省自然科学基金资助项目(E2009000365)
关键词
变系数
分数阶微分方程
HAAR小波
算子矩阵
数值解
variable coefficients
fractional differential equation
Haar wavelet
operational matrix
numerical solution