期刊文献+

小波方法求一类变系数分数阶微分方程数值解 被引量:4

Wavelet method to the numerical solution for a class of fractional differential equation with variable coefficients
下载PDF
导出
摘要 考虑一类变系数分数阶微分方程的数值解.将Haar小波与算子矩阵思想有效结合,并对变系数进行恰当的离散,将变系数分数阶微分方程转化为线性代数方程组,使得计算更简便,并证明了该算法的收敛性.最后通过数值算例验证了方法的有效性. A wavelet method to the numerical solution for a class of fractional differential equation with variable coefficients is proposed,which combining Haar wavelet and operational matrix together and discreting the coefficients efficaciously.The original problem is translated into a system of algebraic equations and the computation become convenient.The convergence of this method is given.The numerical examples show that the method is effective.
机构地区 燕山大学理学院
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2012年第6期17-21,共5页 Journal of Northwest Normal University(Natural Science)
基金 河北省自然科学基金资助项目(E2009000365)
关键词 变系数 分数阶微分方程 HAAR小波 算子矩阵 数值解 variable coefficients fractional differential equation Haar wavelet operational matrix numerical solution
  • 相关文献

参考文献13

  • 1李弼程,罗建书.小波分析及其应用[M].北京:电子工业出版社,2005.
  • 2陈景华.Caputo分数阶反应-扩散方程的隐式差分逼近[J].厦门大学学报(自然科学版),2007,46(5):616-619. 被引量:14
  • 3LIU F,ANH V,TURNER I. Numerical solutionof space fractional Fokker-Planck equation [ J ].Comput Appl Math , 2004,166 : 209-219.
  • 4ZAID O,SHAHER M. A generalized differentialtransform method for linear partial differentialequations of fractional order [ J ]. AppliedMathematics Letters <, 2008,21: 194-199.
  • 5LI Yuan-lu. Solving a nonlinear fractional differentialequation using Chebyshev wavelets [ J ]. CommunNonlinear Sci Numer Simulat,2010,15: 2284-2292.
  • 6EI-KALLA I L. Error estimate of the series solutionto a class of nonlinear fractional differential equations[J]. Commun Nonlinear Sci Numer Simula,2011,16: 1408-1413.
  • 7PODLUBNY I. Franctional Differential Equations[M]. San Diego: Academic Press, 1999.
  • 8GUF J,JIANG W. The Haar wavelets operationalmatrix of integration[J]. Int J Syst Sci,1996, 27:623-628.
  • 9CHEN C F,HSIAO C H. Design of piecewiseconstant gains for optimal control via Walsh functions[J]. IEEE Transactions on Automatic Control,1975, 20: 596-603.
  • 10KILICMAN A, AL ZHOUR Z A A. Kroneckeroperational matrices for fractional calculus and someapplications[J]. Appl Math Comput. 2007,187(1):250-265.

二级参考文献18

  • 1陈景华,刘发旺.Riesz分数阶反应-扩散方程数值近似的稳定性与收敛性分析[J].厦门大学学报(自然科学版),2006,45(4):466-469. 被引量:5
  • 2胡健伟 汤怀民.微分方程数值解法[M].北京:科学出版社,1999..
  • 3Hilfer R.Applications of fractional calculus in physics[M].Singapore:World Scientific,2000.
  • 4Scalas E,Gorenflo R,Mainardi F.Fractional calculus and continuous-time finance[J].Physica A,2000,284:376-384.
  • 5Wyss W.The fractional Black-Scholes equation[J].Fractional Calculus Appl Anal,2000,3:51-61.
  • 6Huang F,Liu F.The time fractional diffusion equation and advection-dispersion equation[J].ANZIAM J,2005,46(E):317-330.
  • 7Su N,Sander G,Liu F,et al.Similarity solution of Fokker-Planck equation with time-and scale-dependent dispersivity for solute transport in fractal porous media[J].Applied Mathematical Modelling,2005,29:852-870.
  • 8Huang F,Liu F.The space-time fractional diffusion equation with Caputo derivatives[J].J Appl Math Comp,2005,19:233-245.
  • 9Huang F,Liu F.The fundamental solution of the space-time fractional advection equation[J].J Appl Math Comp,2005,18:339-350.
  • 10Gorenflo R,Mainardi F,Moretti D,et al.Descrete random walk models for space-time fractional duffusion[J].Chemical Physics,2002,284:521-541.

共引文献20

同被引文献17

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部