期刊文献+

改进UKF算法在移动机器人定位系统中的应用 被引量:4

Application of an improved UKF algortihm in mobile-robot localization system
下载PDF
导出
摘要 为解决移动机器人室内定位误差较大的问题,提出一种将最小偏度采样策略和衰减记忆滤波相结合的改进UKF(unscented Kalman filter)算法.该算法采用最小偏度采样策略,采样点个数由2n+1减少到n+2,提高了定位实时性;采用衰减记忆平方根滤波修正量测噪声的权值,避免滤波发散,提高了系统鲁棒性.构建无线局域网定位系统,使用改进的UKF算法对获得的无线信号(RSSI值)进行滤波.采用三边定位法进行定位计算.实验结果表明,系统平均定位误差降低49%,达到0.505 m,可较好地实现机器人的精确定位,满足移动机器人的室内定位要求. An improved UKF algorithm for error reduction in the robot's interior self-localization was presented by combining minimum skewness sampling and fading skewness sampling strategies for improving real time memory filtering methods. The algorithm adopted minimum performance, decreasing the number of sampling points from 2n + 1 to n + 2. Adopting the fading memory square root filter to correct the weight values of measurement noises, so as to weaken filter divergence and improve robustness of the system. Secondly, the wireless local area network (WLAN) localization system was constructed and the improved UKF algorithm helped to correct the received signal strength indicator (RSSI) values from wireless router. Lastly, using a trilateral calculation method for the robot co- ordinate, results showed the localization system reduced average localization deviation by 49% with an average value of 0.505m, which satisfies the accuracy position of the indoor-robot requirements.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第10期1289-1294,共6页 Journal of Harbin Engineering University
基金 国家863计划资助项目(2007AA04Z255) 国家自然科学基金资助项目(61002004) 黑龙江省自然科学基金资助项目(E200908)
关键词 改进的UKF算法 最小偏度采样 衰减记忆 定位算法 移动机器人 improved UKF algorithm minimum skewness sampling fading memory filter location algorithm mobile Robot
  • 相关文献

参考文献15

  • 1MA Xudong, DAI Xianzhong, SHANG Wen. Vision-based extended Monte Carlo localization for mobile robot [ C ]// Proceedings of the IEEE International Conference on Mecha- tronics and Automation. [ s. 1 ], 2005.
  • 2XU Zezhong, LIU Jilin, XIANG Zhiyu. Map building and localization using 2D range scanner [ C ] //Proceedings of the 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Kobe, Japan, 2003.
  • 3BUGARD W, DERR A, FOX D, et al. Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach [ C ] //Proceed- ings of the 1998 IEEE/RSJ International Conference on In- telligent Robots and Systems. Victoria B C, Canada, 1998.
  • 4PORTA J M, KROSE B J A. Apppearance-based concur- rent map building and localization using a multi-hypotheses tracker[ C ] //Proceedings of 2004 IEEE/RSJ International Conerence on Intelligent Robots and Systems. Sendai, Ja- pan, 2004.
  • 5海丹,李勇,张辉,李迅.无线传感器网络环境下基于粒子滤波的移动机器人SLAM算法[J].智能系统学报,2010,5(5):425-431. 被引量:4
  • 6夏琳琳,张健沛,初妍.计算智能在移动机器人路径规划中的应用综述[J].智能系统学报,2011,6(2):160-165. 被引量:7
  • 7陶辉,吴怀宇,程磊,张雄希,杨升.轮式移动机器人FastSLAM算法研究[J].哈尔滨理工大学学报,2011,16(1):42-47. 被引量:4
  • 8JULIER S J,UHLMANN J K, DURRANT-WHYTE H F. A new approach for filtering nonlinear systems [ C ]//Proceed- ings of American Control Conference. [ s. 1. ], 1995.
  • 9刘丽雯,张崇巍,徐玉华,汪木兰.基于UKF的室内移动机器人定位问题[J].合肥工业大学学报(自然科学版),2009,32(1):9-13. 被引量:3
  • 10李丹,刘建业,熊智,熊剑.基于最小偏度采样的卫星自主导航SRUKF算法[J].南京航空航天大学学报,2009,41(1):54-58. 被引量:14

二级参考文献76

共引文献47

同被引文献39

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部