期刊文献+

分数阶Brown马达及其定向输运现象 被引量:2

Fractional Brownian motor and its directed transport
原文传递
导出
摘要 选取幂函数作为广义Langevin方程的阻尼核函数,采用闪烁棘轮势,建立了过阻尼分数阶Brown马达模型.结合分数阶微积分的记忆性,分析了粒子在过阻尼分数阶Brown马达作用下的运动特性.研究发现,较之整数阶情形,过阻尼分数阶Brown马达也会产生定向输运现象,并且在某些阶数下会产生整数阶情形所不具有的反向定向流.此外,还讨论了阶数和噪声强度对系统输运速度的影响,发现当阶数固定时,其平均输运速度会随噪声变化出现随机共振;当噪声强度固定时,其输运速度会随阶数变化而振荡,即出现多峰的广义随机共振现象. Adopting power function as a damping kernel function of generalized Langevin equation, flash ratchet potential as a potential field, the model of fractional Brownian motor is derived in the case of overdamped condition. With the memory effect of fractional derivatives, the motion characteristics of the particle in overdamped fractional Brownian motor are discussed. Inverse transport which is not seen in conventional Brownian motor, is found in an overdamped fractional Brownian motor. The influences of fractional order and noise density on transport speed are discussed separately. For a fixed fractional order, stochastic resonance appears in transport speed as noise density varies. For a fixed noise density, transport speed will oscillate as the fractional order varies, that is, multipeak generalized stochastic resonance takes place.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第21期64-69,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11171238)资助的课题~~
关键词 分数阶Brown马达 定向输运 反向定向流 随机共振 fractional Brownian motor directed transport inverse transport stochastic resonance
  • 相关文献

参考文献13

  • 1Astumian R D 1997 Science 276 917.
  • 2包景东.2009经典和量子耗散系统的随机模拟方法(北京:科学出版社)第160页.
  • 3郑志刚.2004耦合非线性系统的时空动力学与合作行为(北京:高等教育出版社)第286页.
  • 4郭鸿涌,李微,纪青,展永,赵同军.2004物理学报533684.
  • 5Qian M, Wang Y, Zhang X J 2003 Chin. Phys. Lett. 20 810.
  • 6程海涛,何济洲,肖宇玲.2012物理学报,61010502.
  • 7Gitterman M 2005 Phys. Stat. Mech. Appl. 352 309.
  • 8de Andrade M F 2005 Phys. Lett. A 347 160.
  • 9Liu F, Anh V, Turner I, Zhuang P 2003 Z Appl. Math. Comput. 13 233.
  • 10Benson D A, Wheatcraft S W, Meerschaert M M 2000 Water Re- sour. Res. 36 1403.

同被引文献17

  • 1Kay, E R, D A Leigh and F Zerbetto , Synthetic molecular motors and mechanical machines [J]. Angewandte Chemie International Edition, Z007. 46 (1- Z): 7Z.
  • 2Reimann, P, Brownian motors: noisy transport far from equilibrium [J].Phys Rep. 2002. 361 (2): 57.
  • 3Igarashi. A. S Tsukamoto and H Goko , Transport properties and efficiency of elastically coupled Brownian motors [J]. Phys Rev E. 2001. 64 (5): 051908.
  • 4de Souza Silva. C C ,Van de Vondel , J. Mathieu M. et al. Controlled multiple reversals of a ratchet effect [J]. Nature. 2006. 440(7084): 65l.
  • 5Wang H. Bao J. Cooperation behavior in transport process of coupled Brownian motors [J]. Physica A: Statistical Mechanics and its Applications. 2005. 357(3): 373.
  • 6Wang H. Bao J. Cooperation behavior in transport process of coupled Brownian motors [J]. Physica A: Statistical Mechanics and its Applications. 2005. 357(3): 373.
  • 7Bao J. Transport in a flashing ratchet in the presence of anomalous diffusion [J]. Phys Lett A. 2003. 314(3): 203-208.
  • 8Ai B, He v, Zhong W, Particle diode: rectification of interacting Brownian ratchets [J]. Phys Rev E, 2011, 83(5): 051106.
  • 9Oldham K B, Spanier J, The fractional calculus: theory and applications of differentiation and integration to arbitrary order [M]. New York: Academic press, 1974.
  • 10Fox, R F, et al. Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise [J]. Phys Rev A, 1988, 38 (11): 5938-5940.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部