期刊文献+

Energy Conversion Efficiency of Rainbow Shape Piezoelectric Transducer 被引量:3

Energy Conversion Efficiency of Rainbow Shape Piezoelectric Transducer
原文传递
导出
摘要 With the aim to enhance the energy conversion efficiency of the rainbow shape piezoelectric transducer, an analysis model of energy conversion efficiency is established based on the elastic mechanics theory and piezoelectricity theory. It can be found that the energy conversion efficiency of the rainbow shape piezoelectric transducer mainly depends on its shape parameters and ma- terial properties from the analysis model. Simulation results show that there is an optimal length ratio to generate maximum en- ergy conversion efficiency and the optimal length ratios and energy conversion efficiencies of beryllium bronze substrate trans- ducer and steel substrate transducer are (0.65, 2.21%) and (0.65, 1.64%) respectively. The optimal thickness ratios and energy conversion efficieneies of beryllium bronze substrate transducer and steel substrate transducer are (1.16, 2.56%) and (1.49, 1.57%) respectively. With the increase of width ratio and initial curvature radius, both the energy conversion efficiencies de- crease. Moreover, beryllium bronze flexible substrate transducer is superior to the steel flexible substrate transducer. With the aim to enhance the energy conversion efficiency of the rainbow shape piezoelectric transducer, an analysis model of energy conversion efficiency is established based on the elastic mechanics theory and piezoelectricity theory. It can be found that the energy conversion efficiency of the rainbow shape piezoelectric transducer mainly depends on its shape parameters and ma- terial properties from the analysis model. Simulation results show that there is an optimal length ratio to generate maximum en- ergy conversion efficiency and the optimal length ratios and energy conversion efficiencies of beryllium bronze substrate trans- ducer and steel substrate transducer are (0.65, 2.21%) and (0.65, 1.64%) respectively. The optimal thickness ratios and energy conversion efficieneies of beryllium bronze substrate transducer and steel substrate transducer are (1.16, 2.56%) and (1.49, 1.57%) respectively. With the increase of width ratio and initial curvature radius, both the energy conversion efficiencies de- crease. Moreover, beryllium bronze flexible substrate transducer is superior to the steel flexible substrate transducer.
出处 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第5期691-697,共7页 中国航空学报(英文版)
基金 National Natural Science Foundation of China (10972 102) Research Fund for the Doctoral Program of Higher Education of China (200802870007) Technology Research and Development Program of Jiangsu Province (BE2009163)
关键词 energy conversion efficiency rainbow shape piezoelectric transducer theoretical analysis energy harvesting elec-tromechanical coupling coefficient energy conversion efficiency rainbow shape piezoelectric transducer theoretical analysis energy harvesting elec-tromechanical coupling coefficient
  • 相关文献

参考文献1

二级参考文献2

共引文献15

同被引文献10

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部