期刊文献+

多复变中Bloch空间到BMOA空间的拉回

Bloch-to-BMOA Pullbacks in Several Complex Variables
下载PDF
导出
摘要 设φ是从单位球B^m到单位多圆柱D^n的解析映射,该文研究了由φ诱导的复合算子从Bloch空间到BMOA空间的拉回性质,并给出了具有此性质的充要条件.如果用Hardy空间H^2(B^m)代替。BMOA空间,类似结论仍然成立. For a given holomorphic map φ from unit ball Bm to polydisk Dn, the present paper investigates the Bloch-to-BMOA composition property (pullback property) of φ. More precisely, a sufficient and necessary condition is given that the pullback property from the Bloch space Bn on Dn to BMOA on BM holds. The same result holds when BMOA space is taken by H2(Bm).
出处 《数学物理学报(A辑)》 CSCD 北大核心 2012年第5期851-860,共10页 Acta Mathematica Scientia
基金 国家自然科学基金(10971153 10671141)资助
关键词 BLOCH空间 BMOA空间 复合算子 拉回 多圆柱 单位球 Bloch space BMOA space Composition operators Pullbacks Polydisc Unit ball.
  • 相关文献

参考文献19

  • 1Choa J S, Choe B R. Composition with a homogeneous polynomial. Bull Korean Math Soc, 1992, 29: 57-63.
  • 2Choe B R, Ramey W, Ullrich D. Bloch-to-BMOA pullbacks on the disk. Proceedings of the A M S, 1997, 125(10): 2987-2996.
  • 3Cowen C, MacCluer B. Composition Operators on Spaces of Analytic Fuanctions. Studies in Advanced Math, Boca Raton: CRC Press, 1995.
  • 4Duren P L. Theory of Hp Spaces. New York: Academic, 1970.
  • 5Fang Z S, Zhou Z H. Difference of composition operators on the space of bounded analytic functions in the Polydisc. Abstract and Applied Analysis, 2008, 983132.
  • 6Fang Z S, Zhou Z H. Difference of composition operators on the Bloch space in the Polydisc. Bull Aust Math Soc, 2009, 79:465-471.
  • 7Fang Z S, Zhou Z H. Extended Cesaro operators on BMOA in the unit ball. JournM of MathematicM Inequalities, 2010, 4(1): 27-36.
  • 8Mackey M, Mellon P. Angular derivatives on bounded symmetric domains. Israel Jounal of Mathematics, 2003, 138:291 -315.
  • 9Ramey W, Ullrich D. Bounded mean oscillations of Bloch pull-baeks. Math Ann, 1991, 291:590-606.
  • 10Rudin W. Function Theory in the Unit Ball of Cn. New York: Springer-Verlag, 1980.

二级参考文献7

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部