期刊文献+

一种带约束条件的集值映射的一致线性次正则性

Uniform Linear Subregularity of a Constraint Multifunction
下载PDF
导出
摘要 在Asplund空间中讨论了一种带约束条件的有限个集值映射的一致线性次正则性,以次微分的形式给出一个必要条件,并在次光滑的假设下,运用变分分析的方法,以该形式给出一致线性次正则性的一个充分条件. This paper studies the uniform linear subregularity of finitely constraint multifunctions in Asplund Spaces. Through variational analysis, a necessary condition is derived via subdifferentials. With this, it obtains a sufficient condition for those functions to be uniformly linear subregular under the assumption of subsmoothness.
出处 《云南民族大学学报(自然科学版)》 CAS 2012年第6期415-418,共4页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 国家自然科学基金(11161025)
关键词 极限法锥 极限次微分 次光滑 一致线性次正则 limiting normal cone limiting subdifferential subsmooth uniform linear subregular
  • 相关文献

参考文献9

  • 1何青海,欧阳薇.集值映射g(x)+Ω(x)切锥、法锥表示及calmness充分条件[J].云南大学学报(自然科学版),2010,32(5):503-509. 被引量:4
  • 2IOFFE A D, OUTRATA J V. On metric and clamness qualification conditions in subdifferential calculus [ J]. Set -Valued Anal, 2008,16 (2) :199 -227.
  • 3POLIQU1N R A,ROCKAFELLAR R T, THIBOULT L. Local differentiability of distance functions [ J]. Trans Amer Math Soc, 2000,352( 11 ) :5231 -5249.
  • 4ZHENG Xi-yin, NG Kun-fu. Metric subregularity and constraint qualifications for convex generalized equations in Banach spaces [J]. SIAM J Optim, 2007, 18( 2): 437 -460.
  • 5MORDUKHOVICH B S, SHAO Y. Nonsmooth sequential analysis in asplund space [J]. Trans Amer Math Soc, 1996,348 (4) : 1235 - 1280.
  • 6ZHENG Xi-yin, NG Kun-fu. Calmness for L- subsmooth multifunctions in banach spaces [J]. SIAM J Optim, 2009,19 (4) : 1648 - 1673.
  • 7ZHENG Xi-yin, NG Kun-fu. Linear regularity for a collection of suhsmooth sets in banach spaces [ J ]. SIAM J Optim, 2008, 19 ( 1 ) :62 -76.
  • 8CLARKE F H. Optimization and nonsmooth analysis [ M]. New York: Wiley, 1983:95 -109.
  • 9MORDUKHOVICH B S. Variational analysis and generalized differentiation I , II : basic theory [ M ]. New York : Springer - Verlag, 2006 : 195 - 223.

二级参考文献15

  • 1HENRION R, OUTRATA J. Calmness of constraint systems with applications[ J]. J Math Program ,2005,104:437-464.
  • 2HENRION R, JOURANI A, OUTRATA J. On the calmness of a class of multifunctions [ J ]. SIAM J Optim ,2002,13 (2) :603- 618.
  • 3ZHENG Xi-yin,NG Kun-fu. Calmness for L- subsmooth multifunctions in banach spaces [ J ]. SIAM J Optim,2009,19 (4) : 1 648-1 673.
  • 4ZHENG Xi-yin, YANG Xiao-qi. Weak sharp minima for semi - infinite optimization problems with applications [ J ]. SIAM J Optim, 2007,18 ( 2 ) : 573-588.
  • 5ZHENG Xi-yin, NG Kun-fu. Metric subregularity and constraint qualifications for convex generalized equations in Banach spaces[ J]. SIAM J Optim ,2007,18 (2) :437-460.
  • 6ZHENG Xi-yin, NG Kun-fu. Metric regularity and constraint qualifications for convex inequalities on Banach spaces [ J ]. SIAM J Optim, 2004,14 ( 3 ) : 757-772.
  • 7POLIQUIN R A, ROCKAFELLAR R T, THIBOULT L. Local differentiability of distance Functions [ J ]. Trans Amer Math Soc, 2000,352( 11 ) :5 231-5 249.
  • 8AUSSEL D, DANILIDIS A,THIBOULT L. Subsmooth sets:functional characterizations and related concepts [ J ]. Trans Amer Math Soc ,2004,357 (4) :1 275-1 301.
  • 9NG Kun-fu, ZHENG Xi-yin. Characterizations of error bounds for convex multifunctions on Banach spaces [ J ]. Math Oper Res ,2004,29 ( 1 ) :45-63.
  • 10MORDUKHOVICH B S, SHAO Y. Nonsmooth sequential analysis in Asplund space [ J ]. Trans Amer Math Soc, 1996,348 (4) :1 235-1 280.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部