期刊文献+

广义对角占优矩阵的新判据及其在神经网络系统中的应用

New Criteria for Generalized Diagonally Dominant Matrices and Its Application on Neural Network System
下载PDF
导出
摘要 广义对角占优矩阵在矩阵分析和数值代数的研究中具有重要作用,但在实用中要判别广义对角占优矩阵是十分困难的。本文通过对矩阵行标作划分的方法,给出了判定广义对角占优矩阵的一组新条件,改进了近期的相关结果,并给出其在神经网络系统中的应用,相应数值例子说明了结果的有效性。 Generalized diagonally dominant matrices play a very important role in the research of matrix analysis and numerical algebra. But it is difficult to determine a generalized diagonally dominant matrix in practice. In this paper, some sufficient conditions for generalized diagonally dominant matrices were obtained according to the partition of the row indices, some related results were improved, and its application on neural network system was given. Advantages of results obtained were illustrated by a numerical example.
作者 王峰
出处 《贵州大学学报(自然科学版)》 2012年第5期1-4,共4页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金项目(10961027 71161020) 山东省教育科学重点课题项目(2011GG049)
关键词 广义对角占优矩阵 神经网络系统 对角占优性 不可约 非零元素链 generalized diagonally dominant matrices neural network system diagonally dominant, irreducible nonzero elements chain
  • 相关文献

参考文献9

  • 1T. B. Gan, T. Z. Huang, D. J. Evans,et al. Sufficient conditionsfor H - matrices[ J]. Inter. J. Comp. Mathe. , 2005, 82(2) :247-258.
  • 2王峰.非奇异H-矩阵的简捷判定[J].高等学校计算数学学报,2009,31(4):343-348. 被引量:10
  • 3T. B. Gan, T. Z. Huang. Simple criteria for nonsingularH - ma-trix [J]. Linear Algebra Appl.,2003 , 374:317 - 326.
  • 4干泰彬,黄廷祝.非奇异H矩阵的实用充分条件[J].计算数学,2004,26(1):109-116. 被引量:130
  • 5庹清,谢清明,刘建州.非奇异H-矩阵的实用新判定[J].应用数学学报,2008,31(1):143-151. 被引量:20
  • 6韩涛,陆全,徐仲,杜永恩.一组非奇异H-矩阵的新判据[J].工程数学学报,2011,28(4):498-504. 被引量:11
  • 7M. Neumann. A note generalizations of strict diagonal dominancefor real matrices[J]. Linear Algebra Appl.,1979, 26:3 - 14.
  • 8R. S. Varga. On recurring theorems on diagonal dominance[ J].Linear Algebra Appl. ,1976, 13:1 -9.
  • 9Liao Xiaoxin, Liao Yang. Stability of Hopfield type neural network(II)[ J]. Science in China: Series A,1997 , 40(8) :813 -816.

二级参考文献14

共引文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部