1Vapnik V N. Statistical Learning Theory[M].New York:wiley,1998.
2Peng G,Wang W S Y. Tone recognition of continuous Cantonese speech based on support vector machines[J].IEEE Transactions on Neural Networks,2003,(06):1506-1518.
3Kim K I,Jung K,Park S H,Kim H J. Support vector machine-based text detection in digital video[J].Pattern Recognition,2001,(02):527-529.
4Suykens J A K, Vandewalle J. Recurrent least squares support vector machines [J ]. IEEE Trans. on Circuits and Syst. I, 2000(47) : 1109 - 1114.
5Baesens B, Viaene S. An empirical assessment of kernel type performance for least squares support vector machine classifiers[C]//4th Int. Conf. knowledge-Based Intelligent Engineering Systems and Allied Technologies. Brighton, UK, 2000:313-316.
6Suykens J A K, Vandewalle J. Multi - class least squares support vector machines[C]//Int. Joint Conf. on Neural Networks ( IJCNN' 99). Washington I)C, 1999: 900 - 903.
7Tung Sheng Yang, Duel Hallen A, Hallen H. Long range fading prediction to enable adaptive transmission at another carrier[C]//4th IEEE Workshop on Signal Processing Advanees in Wireless Communications. USA: North Carolina State University, 2003 : 195 - 199.
8Gao X M, Tanskanen J M A, Ovaska S J. Comparison of linear and neural network - based power prediction schemes for mobile DS/CDMA systems[ C]//VTC' 96. Atlanta: IEEE press, 1996:61 - 65,.
9Jakes W C. Microwave mobile communications[M]. Piscataway, NJ: IEEE Press, 1994.
10Vapnik V N. The nature of statistical learning theory[M]. New York:Springer Verlag, 1995.