摘要
在何种条件下,Sylvester不等式化为等式是当前研究的重点。本文利用λ矩阵及其初等变换对应到分块矩阵diag{A+k1E,A+k2E,…,A+ktE}中,使得当k1,k2,…,kt在满足一定的条件时,有sum (R(A+kiE)=R) from i=1 to t multiply ((A+kiE)+(t-1)n) from i=1 to t.
Under any conditions, to change the inequality Sylvester into equation is the focus of the current study. This paper used the λ matrix and its elementary transformation to correspond to the partitioned matrix diag{A+k1E, A+k2E A+ktE} , so that when k1, k2 kt meet certain conditions, there are t∑i=1R(A+kiE)=Rt∏(A+kiE)+(t-1)n.
出处
《价值工程》
2012年第31期241-242,共2页
Value Engineering
关键词
秩
λ矩阵
初等变换
分块阵
rank
λmatrix
elementary transformation
chunkedarray