摘要
相机标定是三维重构中的关键步骤,本文对在自标定下的两视图三维几何模型恢复进行研究。先采用SURF算法得到图像匹配点对,在此基础上,利用RANSAC鲁棒估计基础矩阵;然后根据Kruppa方程所推导出的二次方程自标定出相机内参数,进一步地,通过分解本质矩阵求解出相机外参数;最后,根据三角化法求得空间三维坐标值。实验结果证实,该方法具有效性和正确性,并且能够真实地再现物体的三维模型。
Since camera calibration is a critical step in the three-dimensional reconstruction,the 3D geometric model recovery of two views based on self-calibration is studied in this paper.Firstly,image matching points are obtained by using SURF algorithm,and then fundamental matrix is robustly estimated with RANSAC.Secondly,the intrinsic parameters are calculated according to a quadratic equation which is educed the Kruppa equation;moreover,the external parameters are also solved through SVD decomposition of the essential matrix.Finally,spatial three-dimensional coordinate values are easily obtained by the triangulation method.The experimental results validate the validity and correctness of this method,which can factually represent 3D model of objects.
出处
《科技广场》
2012年第7期86-88,共3页
Science Mosaic
基金
国家自然科学基金(No.60973096)
航空科学基金(NO.2010ZC56007)
周口师范学院青年科研基金资助项目(zknuqn201127B)
关键词
SURF算法
基础矩阵
本质矩阵
自标定
SURF Algorithm
Fundamental Matrix
Essential Matrix
Self-calibration