期刊文献+

一类非线性分数阶多点边值问题的可解性

Solvability of a Class of Nonlinear Fractional Multi-point Boundary Value Problems
下载PDF
导出
摘要 讨论了一类非线性分数阶微分方程多点边值问题的可解性,主要应用Banach压缩映像原理和Leray-Schauder非线性抉择定理得到解的存在性和唯一性,最后给出例子说明定理的适用性。 The existence and uniqueness of solutions for a class of nonlinear fractional differential equations with multi-point fractional boundary value conditions is considered in this paper by applying Banach contraction principle and Leray-Schauder nonlinear alternative theorem. An example is presented to illustrate our results.
出处 《北京联合大学学报》 CAS 2012年第4期64-68,共5页 Journal of Beijing Union University
基金 国家自然科学基金资助(11071001) 安徽大学211工程项目资助(KJTD002B)
关键词 分数阶微分方程 边值问题 非线性抉择定理 存在性 唯一性 Fractional differential equation Boundary value problem Leray-Schauder nonlinear alternative theorem Existence and uniqueness
  • 相关文献

参考文献1

二级参考文献8

  • 1Ran, A. C. M., Reurings, M. C. B.: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc., 132, 1435-1443 (2004)
  • 2Nieto, J. J., Rodrlguez-Ldpez, R.: Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations. Order, 22, 223-239 (2005)
  • 3Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math., 5, 285-309 (1955)
  • 4Cousot, P., Cousot, R.: Constructive versions of Tarski's fixed point theorems. Pacific J. Math., 82, 43-57 (1979)
  • 5Zeidler, E.: Nonlinear functional analysis and its applications, Vol Ⅰ: Fixed-Point Theorems, Springer-Verlag, New York, 1986
  • 6Amann, H.: Order structures and fixed points, Bochum: Mimeographed lecture notes, Ruhr-Universitat, 1977
  • 7Heikkila, S., Lakshmikantham, V.: Monotone iterative techniques for discontinuous nonlinear differential equations, Marcel Dekker, Inc., New York, 1994
  • 8Ladde, G. S., Lakshmikantham, V., Vatsala, A. S.: Monotone iterative techniques for nonlinear differential equations, Pitman, Boston, 1985

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部