期刊文献+

气温对中国五城市居民死亡率的滞后影响分析 被引量:11

Analysis of the lag-effects of temperature on the five cities' mortality in China
原文传递
导出
摘要 目的对中国5个城市气温与死亡率关系进行分析,探讨气温对不同城市死亡率影响的滞后效应特点。方法分别从中国CDC和气象网站获取北京、天津、上海、南京、长沙5个城市的人口和气象数据,采用R2.12.0软件的分布滞后非线性模型(OLNM)软件包将数据资料代人后进行分析。分析气象因素对死亡率的影响,累积效应,计算RR值。结果北京、天津属于温带城市,上海、南京和长沙均属于亚热带季风气候。在气候与死亡效应的关系中,在日平均气温达30.0℃、滞后0d时,RR值最高,南京(1.31,95%CI:1.21—1.41)和长沙市(1.25,95%CI:1.13~1.39)的死亡率的RR值要高于北京(1.18,95%CI:1.12~1.25)、天津(1.18,95%CI:1.10~1.26)和上海市(1.15,95%CI:1.06~1.24)。在总的滞后时间(30d)内,各个城市的最低日平均气温对天津、长沙、北京、南京和上海市的死亡率的RR值分别为3.41,95%CI:1.60~7.27、2.15,95%CI:1.11~4.15、2.24,95%C1:1.12~4.48、2.80,95%C1:1.75~4.48、1.53,95%C1:1.12~2.03。日平均温度对死亡率的累积RR值有较为明显的“U”形曲线。极端高温和最高日平均气温对死亡率的相对危险度在滞后0~1d时RR值均〉1;而低日平均气温在滞后2d后对死亡率有明显影响。结论高温对死亡率具有急性效应的影响,而低温影响的滞后时间较长。极端低温和最低日平均气温对北京、天津地区城市居民死亡率的影响较大,而极端高温和日最高平均气温则对上海、南京、长沙的影响较大。 Objective To study the characteristics of the effect of different temperatures on mortality of different cities through analyzing the relationship between mortality and meteorology of five Chinese cities. Methods We get the demography and climate data of Beijing, Tianjin, Shanghai, Nanjing and Changsha cities from National Center of Disease Control and Prevention and Climate net respectively. Then we applied the R software and Distributed Lag Non-linear Models (DLNM) package to analyze our data and find the nonlinear and lag effects on mortality using DLNM. Results The city of Beijing and Tianjin are located in the temperate zone. And the climate of Shanghai, Nanjing, Changsha belong to subtropical monsoon climate. When the daily mean temperature arrived 30 ~C and on lag 0 day, the values of relative risk of effect of high mean temperature on mortality in Nanjing ( l. 31,95 % CI: l. 21 - 1.41 )and Changsha ( 1.25,95% CI: 1.13 - 1.39 ) are larger than that in Beijing( 1.18,95% CI: 1.12 - 1.25 ) ,Tianjin ( 1.18,95 % CI: 1.10 - 1.26) and Shanghai ( 1.15,95 % CI: 1.06 - 1.24 ). While the relative risk of effect of low mean temperature on mortality is lower and lasts for a longer lag time. During the whole lag time, the relative risk of effect of the lowest daily mean temperature of each city on mortality in Tianjin, Changsha, Beijing, Nanjing, and Shanghai is 3.41,95% CI: 1.60 - 7.27,2. 15,95% CI: 1.11 - 4. 15,2. 24,95% CI: 1.12 -4. 48,2.80,95% CI: 1.75 - 4.48,1.53,95% CI: 1.12 - 2. 03, respectively. The cumulative effect of mean temperature on mortality appears like a U-shape. When on lag 0 - 1 day, the value of relative risk of effect of extremely high temperature and the highest mean temperature on mortality is larger than 1. While the effect of low temperature on mortality becomes obvious after lag 2 days. Conclusion Depending on this research, extremely low temperature and the lowest mean temperature has a more obvious impact on mortality in the northern area than in the south. Extremely high temperature and the highest daily mean temperature is on the contrary. Meanwhile, different temperatures have different impacts on mortality in the same city:high temperature has an acute impact while there is a longer lag time in low temperature.
出处 《中华预防医学杂志》 CAS CSCD 北大核心 2012年第11期1015-1019,共5页 Chinese Journal of Preventive Medicine
关键词 温度 城市 死亡率 分布滞后非线性模型 滞后效应 Temperature Cities Mortality Distributed lag non-linear models Lag effect
  • 相关文献

参考文献20

  • 1罗美娟,刘文英.南昌城市高温热浪气候分析[J].广西气象,2005,26(2):18-20. 被引量:20
  • 2Almeida SP, Casimiro E, Calheiros J. Effects of apparent temperature on daily mortality in Lisbon and Oporto, Portugal. Environ Health ,2010,9 : 12.
  • 3- to Golden JS, Hartz D, Braze1 A, et al. A biometeorology study of climate and heat-related morbidity in Phoenix from 2001 2006. Int J Biometeorol,2008,52(6) :471-480.
  • 4Ishigami A, Hajat S, Kovats RS, et al. An ecological time.series study of heat-related mortality in three European cities, Environ Health ,2008,7:5.
  • 5Patrick L, Kinney A, Marie S, et al, Approaches for estimating effects of climate change on heat-related deaths challenges and opportunities. Environ Sei ,2008,11 ( 1 ) :87-96,.
  • 6Gasparrini A, Armstronga B, Kenward MG, Distributed lag non linear models. Stat Med ,2010,29 (91) :2224 -2234.
  • 7Alistair W, Simon H, Philip W. Climate change and human health in the Asia Pacific region : who will be most vulnerable? Clim Res, 1998,11:31-38.
  • 8魏高峰,龙克柔.中国人口演化模型与中国未来人口预测研究[J].科技咨询导报,2007(13):102-104. 被引量:13
  • 9朱传凤,赵和平.用空气污染指数评价城市空气质量[J].甘肃环境研究与监测,1998,11(2):30-31. 被引量:32
  • 10Astrtim DO, Forsberg B, Rockl8v J. Heat wave impact on morbidity and mortality in the elderly population: A review of recent studies. Maturitas ,2011,69 (2) :99-105.

二级参考文献31

  • 1吴小燕,苏高翔.论中国人口问题与可持续发展[J].文教资料,2006(8):39-40. 被引量:6
  • 2郭达烽,毛连海,杨秋平,朱星球.江西夏季高温的形成机制分析[J].气象与减灾研究,2003,27(4):30-32. 被引量:8
  • 3翟振武.人口问题本质上是发展问题[J].中国人口科学,2001(1):9-14. 被引量:10
  • 4安和平.中国人口预测的自回归分布滞后模型研究[J].统计与决策,2005,21(08X):4-7. 被引量:23
  • 5[5]Kalkstein L S, Nichols M C, Barthel C D, et al. A new spatial synoptic classification: Application to air mass analysis. International Journal of Climatology, 1996,16: 983~1004.
  • 6[6]Kalkstein L S, Valimont K M. An evaluation of summer discomfort in the United States using a relative climatological Index. Bull. Amer. Meteor. Soc., 1986, 67(7): 842~848.
  • 7[1]Seiichi Nakai, Toshiyuki Itoh, Taketoshi Morimoto. Deaths from heat-stroke in Japan:1968-1994. Int. J. Biometeor., 1999, 43(2):124~127.
  • 8[2]Smoyer K E. A comparative analysis of heat waves and associated mortality in St. Louis, Missouri-1980 and 1995. Int. J. Biometeor., 1998, 42(1): 44~50.
  • 9[3]Kalkstein L S, Jamason P F, Greene J S, et al. The Philadelphia hot weather-health watch/warning system: development and application, Summer 1995. Bull. Amer. Meteor. Soc., 1996, 77(7): 1519~1528.
  • 10[4]Kalkstein L S. Activities with study group 6 of the international society of biometeorology. Int. J. Biometeor., 1998, 42(1):8~9.

共引文献194

同被引文献197

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部