期刊文献+

利用逐步订正法构建Argo网格资料集的研究 被引量:13

Study on the establishment of gridded Argo data by successive correction
下载PDF
导出
摘要 利用逐步订正法构建了2002年1月至2009年12月期间太平洋海域(60°S-60°N,120°E-80°W)的逐月温、盐度网格资料,其垂向分辩率在5~1 950 m水深范围内为48层,水平分辨率为1°×1°。对网格资料的误差分析表明,整个太平洋海域温度和盐度标准差的平均值分别为0.097℃和0.017。将构建的Argo(Array for Real-time Geostrophic Oceanography,Argo)网格资料集与研究海域获取的CTD(Conductance-Temperature-Depth,)、TAO(Tropical Atmosphere/Ocean array,TAO)和WOA05(World Ocean Alta 5)等资料集进行的比较和分析发现,2006年之前,由于Argo资料相对较少,导致构建的网格资料集存在一定的误差;而在2006年以后的Argo网格资料则与历史观测资料比较一致。况且,由构建的Argo网格资料集揭示的太平洋海域温、盐度分布的主要特征来看,其与WOA05资料集所反映的结果也十分吻合,且前者揭示的特征比后者要更加细致些。这充分说明了,利用逐步订正法构建的Argo网格资料集是值得信赖的,也是可靠的。 Gridded monthly temperature and salinity of the Pacific Ocean from January 2002 to December 2009 are reestablished with 48 levels from 5m to 1950 m vertically and horizontal resolution of 1°×1° by successive correction. Error analysis of the grid data showed that the temperature standard deviation (ST)error for the whole Pacific Ocean was generally 0.097 ℃ and that of salinity was 0.017. The Argo grid data were compared with the CTD sections, TAO and WOA05 datasets respectively. The results showed that the Argo grid data were in good agreement with historic observation data after 2006, and before 2006, the Argo grid data had some errors because the Argo data were relatively less. In addition, Argo grid data can reveal the regional temperature and salinity distribution and main characteristics of the Pacific. Comparing with WOA05 data, Argo grid data make,comparative consistency, revealing finer features than WOA05. Therefore, the Argo grid data re-established by successive correction is worthy of trust and reliability.
出处 《海洋通报》 CAS CSCD 北大核心 2012年第5期502-514,共13页 Marine Science Bulletin
基金 国家海洋公益性行业科研专项(201005033) 国家海洋局第二海洋研究所基本科研业务费专项(JT0904) 浙江省科技条件建设项目(2011F10008)
关键词 ARGO资料 逐步订正法 网格资料集 太平洋 Argo data successive correction gridded data the Pacific Ocean
  • 相关文献

参考文献18

  • 1Akima H, 1970. A new method for interpolation and smooth curvefittingbased on local. Journal of the ACM,17(4) :589-602.
  • 2Barnes S L, 1964. A technique for maximizing details in numericalweather Map analysis J Appl. Meteor, 3: 396-409.
  • 3Barnes S L, 1970. Mesoscale objective analysis using weighted time-series observations. NO A A Tech. Memo. ERL NSSL-62, NationalSevere StoST Laborat-ory, Norman,OK, 1973,41pp.procedures,J. Assoc. Comput.Mech, 17: 589-602.
  • 4Bhaskar T U, Havichandran M,Devender R, 2007. An operationalObjective Analysis system at INCOIS for generation of Argo ValueAdded Products, Technical Report No. INCOIS/MOG-TR-2/07.
  • 5Cressman G P, 1959. An operational objective analysis system. Mon.Wea. Rev, 87: 367-372.
  • 6Gaillard F E, Autret V Thierry, et al, 2009. Quality control of largeAigo datasets J. Atmos. Oceanic. Technol,26 : 337-351.
  • 7Hosoda S,Ohira T, Nakamura T, 2008. A monthly mean dataset ofglobal oceanic temperature and salinity derived from Argo floatObservations JAMSTEC Rep. Res. Dev, (8) November: 47-59.
  • 8Levitus S,1982. Climatological Atlas of the World Ocean, NOAAProfessional Paper No. 13, U.S. Gov. PrintingOffice,173.
  • 9Locamini R A, Mishonov A V,Antonov J I, et al, 2006. World OceanAtlas 2005, Volume 1: Temperature. S. Levitus, Ed. NOAAAtlas NESDIS 61, U.S. Gov.Printing Office,Washington, D.C,182.
  • 10Martin M J, Hines A,Bell M J, 2007. Data assimilation in the FOAMoperational short-range ocean forecasting system : a deseription ofthe scheme and its impact. Q J R Meteorol Soc, 133:981-995.

二级参考文献3

共引文献26

同被引文献120

引证文献13

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部