期刊文献+

基于机器视觉的刀具磨损检测技术 被引量:16

Tool Wear Detection Based on Machine Vision
下载PDF
导出
摘要 针对当前国内外刀具磨损检测的缺点和存在的问题,设计了基于机器视觉的刀具磨损检测方案,分析了刀具磨损检测的原理和识别过程,并结合图像处理的方法,采用自适应中值滤波对刀具图像进行平滑去噪,进一步得到刀具的二值化图像,再采用Canny边缘检测技术提取刀具轮廓信息.最后提出基于人工神经网络的刀具磨损检测算法. In order to solve the shortcomings and problems of cutting tool wear at home and abroad, a scheme of the tool wear detection based on machine vision is designed. The principle and identification process of tool wear detection are analyzed. Through combination of image processing, the method of self-adapted median filter is adopted to eliminate noise on tool image. Then a binary image of the tool is got. And the technique of canny edge detection is used to extract the contour of the tool. Finally an artificial neural network algorithm for tool wear detection is proposed.
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第5期505-508,518,共5页 Journal of Donghua University(Natural Science)
基金 国家"八六三"重大专项资助项目(2012AA041309)
关键词 刀具磨损 机器视觉 图像处理 边缘检测 神经网络 tool wear machine vision image processing edge detection neural network
  • 相关文献

参考文献15

  • 1陈雷明,杨润泽,张治.刀具检测方法综述[J]. 机械制造与研究,2011,40(1):49-50.
  • 2KURADAS, BRADLEYC. A review of machine vision sensorsfor tool condition monitoring [J]. Computers in Industry,1997, 34(1):55-72.
  • 3JEMIELNIAK K, KWIATKOWSKI U WRZOSEK P.Diagnosis of tool wear based on cutting forces and acousticemission measures as inputs to a neural network[J]. Journal ofIntelligent Manufacturing, 1998,9(5) :447-455.
  • 4何光伟,艾长胜,王娜,樊宁,昃向博.基于切削力的刀具磨损监测[J].组合机床与自动化加工技术,2009(12):51-53. 被引量:4
  • 5王明,高东方.基于振动信号的铣刀磨损状态识别[J].制造业自动化,2010,32(A6):96-99. 被引量:7
  • 6MALEKIAN M, PARK S S, JUN M B G. Tool wearmonitoring of micro-milling operations [J]. Journal of MaterialsProcessing Technology, 2009,209(10) :4903-4913.
  • 7BRADLEY C,WONG Y S. Surface texture indicators of toolwear: A machine vision approach [ J ]. Int J Adv ManufTechnol, 2001,17 ?66):435-443.
  • 8谭延凯,段智敏,杨华栋,占宇.刀具磨损检测的图像处理技术研究[J].科技创新导报,2010,7(26):123-123. 被引量:2
  • 9JEMIELNIAK K, ARRAZOLA P J. Application of AE andcutting force signals in tool condition monitoring in micro-milling[J]. CIRP Journal of Manufacturing Science and Technology,2008,1(2):97-102.
  • 10CHUNG K T,GEDDAM A. A multi-sensor approach to themonitoring of end milling operations[J]. Journal of MaterialsProcessing Technology, 2003,139(1/2/3) : 15-20.

二级参考文献17

共引文献15

同被引文献119

引证文献16

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部