期刊文献+

沉默信号调控因子1在1型糖尿病模型小鼠角膜和三叉神经节中的表达及意义 被引量:2

Expression and significance of silence signal regulating factor 1 in cornea and trigeminal ganglion in type 1 diabetes model mice
下载PDF
导出
摘要 背景糖尿病是引发角膜神经病变的高危因素之一。沉默信号调控因子1(Sirtl)在糖代谢、脂代谢、胰岛素分泌调节中发挥着重要的作用,并与神经系统性疾病密切相关。目前,关于Sirtl与糖尿病性角膜神经病变的关系尚不完全清楚。目的探讨Sirtl在1型糖尿病C57BL/6-Ins2Aklta/J小鼠角膜及三叉神经节中的表达及其意义,探讨Sirtl与糖尿病性角膜神经病变的关系。方法取C57BL/6-Ins2Aklta/J雄性小鼠与同窝出生的野生型C57BL/6小鼠各8只,分别作为1型糖尿病模型组和正常对照组。两组小鼠均在12月龄时过量麻醉处死,处死前检测空腹血糖、测体质量。取小鼠三叉神经节和角膜组织,采用苏木精-伊红染色法检测两组小鼠三叉神经节和角膜组织的组织病理学变化,用免疫组织化学法检测三叉神经节和角膜组织中Sirtl蛋白的表达和定位;用荧光定量PCR法检测Sirtl mRNA在三叉神经节和角膜组织中的表达;采用Westernblot检测两组小鼠三又神经节和角膜组织中Sirtl蛋白的相对表达量,并进行比较。结果C57BIM6-Ins2Akita/J小鼠三叉神经节细胞大小不均,细胞排列较为疏松,神经纤维排列紊乱,角膜上皮细胞层数减少,角膜变薄;野生型C57BL/6小鼠神经节细胞排列紧密,细胞形态均一,神经纤维排列整齐。免疫组织化学法检测结果显示,C57BL/6-Ins2Akita/J小鼠角膜中Sirtl蛋白的表达强度低于野生型C57BL/6小鼠。荧光定量PCR结果显示,SirtlmRNA在C57BL/6-Ins2Akita/J小鼠角膜表达的灰度值显著低于野生型C57BL/6小鼠(0.56±O.03VS.0.98±0.13),差异有统计学意义(t=5.853,P=0.010);C57BL/6-Ins2Akita/J小鼠三叉神经节中SirtlmRNA表达的灰度值为2.45±0.18,低于野生型C57BL/6小鼠的2.51±0.22,但差异无统计学意义(t=0.587,P=0.599)。Westernblot检测结果显示,C57BL/6-Ins2Akita/J小鼠角膜中Sirtl蛋白的表达显著低于野生型C57BL/6小鼠(0.780±0.017vs.1.300±0.012),差异有统计学意义(t=33.140,P=0.001);两组小鼠间三叉神经节中Sial蛋白的表达差异无统计学意义(1.100±0.015 vs.1.110±0.017)(t=0.430,P=0.709)。结论12月龄C57BL/6一Ins2Akita/J小鼠角膜的神经和结构发育异常,Sirtl参与糖尿病角膜病变的发病,有可能是潜在的靶点分子。 Background Diabetes is one of the risk factors that leads to corneal neuropathy. Silent signal regulatory factor 1 ( Sirtl ) plays an important role in glucose metabolism, lipid metabolism, regulation of insulin secretion and is closely related to the nervous system disease. The relationship between Sirtl and diabetic corneal neuropathy is not fully understood. Objective This study was to detect the expression of Sirtl in cornea and trigeminal ganglion with type 1 diabetes model mice and explore the association of Sirtl expression with diabetic corneal neuropathy. Methods Eight C57BL/6-Ins2Akita/J male mice and eight wild-type C57BL/6 male mice in the same litter were selected as type 1 diabetes model group and control group,respectively. The mice of two groups were sacrificed in overdose anesthesia method at 12-month old. Histological examination of cornea and trigeminal ganglion was performed using hematoxylin and eosin staining. Expression and localization of Sirtl protein in cornea and trigeminal ganglion were detected using immunohistochemistry. Western blot assay and fluorescine quantitative PCR were respectively used to quantitatively analyze the expression of Sirtl protein and Sirtl mRNA. Results Trigeminal ganglion ceils were uneven in size and shape with the loosened cellular arrangement and disorder neurofibrosis alignment,and the corneal epithelial cells were less in the C57BL/6-Ins2Akita/J mice, but the trigeminal ganglion cells and corneal epithelial cells were normal in wild-type C57BL/6 mice. Immunochemisty exhibited that Sirtl protein was expressed mainly in corneal epithelium and the expression of Sirtl protein was stronger in the C57BL/6 mice than that in C57BL/6-Ins2Akita/J mice. Fluorescine quantitative PCR assay showed that the gray scale value of Sirtl mRNA in cornea in C57BL/6-Ins2Akita/J mice was lower than that of the wild-type C57BL/6 mice(0.56±0. 03 vs. 0.98±0.13) with significant difference(t =5. 853 ,P=0.010). Western blot showed that the expression of Sirtl protein in cornea was lower in C57BL/6-Ins2Akita/J mice than that of the wild-type C57BL/6 mice (0.78±0. 017 vs. 1. 300±0. 012) with significant difference( t=33. 140 ,P = 0. 001 ). However, no significant differences were seen in the gray scale value of Sirt 1 mRNA ( 2.45 ±0. 18 vs. 2. 51 ±0. 22 ) ( t = 0. 587, P = 0. 599 ) and protein level ( 1. 100 ±0. 015 vs. 1.110±0. 017 ) ( t = 0. 430, P = 0. 709) in trigeminal ganglion tissues between C57BL/6-Ins2Akita/J mice and wide-type C57BL/6 mice. Conclusions The corneal nerve and structure is abnormal in 12-month-old C57BL/6-Ins2Akita/J mouse. Sirtl is involved in the pathogenesis of diabetic keratoneuropathy,suggesting that it may be a potential target.
出处 《中华实验眼科杂志》 CAS CSCD 北大核心 2012年第11期982-986,共5页 Chinese Journal Of Experimental Ophthalmology
基金 国家重点基础研究发展计划(973计划)项目(2012CB722409)
关键词 1型糖尿病 沉默信号调控因子1 角膜 三叉神经节 动物模型 Type 1 diabetes Silence signal regulating factor 1 Cornea Trigeminal ganglion Animal model
  • 相关文献

参考文献18

  • 1张增群,谢立信,董晓光.角膜神经损伤后再生的形态和功能学研究[J].中华眼科杂志,1994,30(4):301-304. 被引量:19
  • 2Abdelkader H, Patel DV, McGhee C,et al. New therapeutic approaches in the treatment of diabetic keratopathy : a review[J].Clin Experiment Ophthalmol, 39 : 259-270.
  • 3Pearson T,Shultz LD ,Lief J, et al. A new immunodeficient hyperglycaemic mouse model based on the Ins2Akita mutation for analyses of human islet and beta stem and progenitor cell function [ J]. Diabetologia,2008, 51 : 1449-1456.
  • 4Basu R, Oudit GY, Wang X, et al. Type 1 diabetic cardiomyopathy in the Akita(Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function [ J ]. Am J Physiol Heart Circ Physiol,2009,297 : H2096-2108.
  • 5Barber AJ, Antonetti DA, Kern TS, et al. The Ins2Akita mouse as a model of early retinal complications in diabetes [ J ]. Invest Ophthalmol Vis Sci,2005,46 : 2210-2218.
  • 6Gurley SB, Mach CL, Stegbauer J, et al. Influence of genetic background on albuminuria and kidney injury in Ins2(+/C96Y) (Akita)mice[ J]. Am J Physiol Renal Physiol,298 : F788-795.
  • 7Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog( SIRT1 )-deficient mice [ J ]. Proc Natl Acad Sei U S A,2003,100 : 10794-10799.
  • 8Cristofol R, Porquet D, Corpas R, et al. Neurons from senescence- accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrol[ J]. J Pineal Res,52:271-281.
  • 9Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes[J].Nature, 2007,450 : 712-716.
  • 10Muoio DM, Newgard CB. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes[J]. Nat Rev Mol Cell Biol,2008,9 : 193-205.

二级参考文献17

  • 1张梅,刘祖国,陈家祺,罗丽辉,孙明霞,陈龙山,黄挺,王智崇.正常人角膜神经的共焦显微镜观察[J].中华眼科杂志,2004,40(9):632-634. 被引量:24
  • 2Calvillo MP,McLaren JW,Hodge DO,et al.Corneal reinnervation after LASIK:prospective 3-years longitudinal study[J].Invest Ophthalmol Vis Sci,2004,45(11):3991-3996.
  • 3Gaal V,Mark L,Kiss P,et al.Investigation of the effects of PACAP on the composition of tear and endolymph proteins[J].J Mol Neurosci,2008,36(1-3):321-329.
  • 4Linna TU,Vesaluoma MH,Pérez-Santonja JJ,et al.Effect of myopic LASIK on corneal sensitivity and morphology of subbasal nerves[J].Invest Ophthalmol Vis Sci,2000,41(2):393-397.
  • 5Albietz JM,Lenton LM,McLennan SG,et al.Effect of laser in situ keratomileusis for hypopia on tear film and ocular surface[J].J Refract Surg,2002,18(2):113-123.
  • 6Lee HK,Lee KS,Kim HC,et al.Nerve growth factor concentration and implications in photorefractive keratectomy vs laser in situ keratomileusis[J].Am J Ophthalmol,2005,139(6):965-971.
  • 7Joo MJ,Yuhan KR,Hyon JY,et al.The effect of nerve growth factor on corneal sensitivity after laser in situ keratomileusis[J].Arch Ophthalmol,2004,122:1338-1341.
  • 8Amano S,Rohan R,Kuroki M,et al.Requirement for vascular endothelial growth factor in wound-and inflammation-related corneal neovascularization[J].Invest Ophthalmol Vis Sci,1998,39:18-22.
  • 9Troger J,Kieselbach G,Teuchner B,et al.Peptidergic nerves in the eyes,their source and potential pathophysiological relevance[J].Brain Res Rev,2007,53(1):39-62.
  • 10Falluel-Morel A,Chafai M,Vaudry D,et al.The neuropeptide pituitary adenylate cyclase-activating polypeptide exerts anti-apoptotic and differentiating effects during neurogenesis:focus on cerebellar granule neurones and embryonic stem cells[J].J Neuroendocrinol,2007,19(5):321-327.

共引文献19

同被引文献121

  • 1李筱荣,王伟,袁佳琴.共焦显微镜观察2型糖尿病患者角膜神经分布及形态学特征[J].中华眼科杂志,2006,42(10):896-900. 被引量:22
  • 2The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature,2012,489:57-74.
  • 3Mazzio EA, Soliman KF. Basic concepts of epigenetics:impact of environmental signals on gene expression. Epigenetics, 2012,7 : 119-130.
  • 4Waddington CH. The epigenotype. Endeavour, 1942,1 : 18-20.
  • 5Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol, 2010,28 : 1057-1068.
  • 6G6mez-Daz E, JordO M, Peinado MA, et al. Epigenetics of host- pathogen interactions:the road ahead and the road behind. PLoS Pathog,2012,8 : e1003007.
  • 7] Rao RC,Tchedre KT, Malik MT,et ah Dynamic patterns of histone lysine methylation in the developing retina. Invest Ophthalmol Vis Sci, 2010,51:6784-6792.
  • 8Perkel JM. microRNA Microarrays-Biocompare Editorial Article [ 2011-05-04 1. http://mimablog, com/microrna-microarrays- biocompare-editorial-article/.
  • 9Bhayani MK, Calin GA, Lai SY. Functional relevance of miRNA sequences in human disease. Mutat Res, 2012,731 : 14 - 19.
  • 10Li Y, Kowdley KV. MicroRNAs in Common Human Diseases. Genomics Proteomics Bioinformatics,2012,10:246-253.

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部