期刊文献+

基于距离加权平均绝对差的模板漂移抑制算法 被引量:3

A template drift suppression algorithm based on distance weight MAD
下载PDF
导出
摘要 针对图像序列目标匹配跟踪中出现模板漂移导致目标丢失的问题,提出一种基于距离加权平均绝对差的模板漂移抑制算法。对传统的最小绝对差准则进行改进,利用模板边缘到中心的距离作为参数对实时图与基准图的绝对差结果进行加权,增大失配位置漂移误差,使得真实位置的绝对差最小以防止模板更新过程中产生漂移。研究结果表明:该算法可以在跟踪中有效抑制模板漂移,实现对形变目标的长时间稳定跟踪,实时性好,便于在实时系统中实现。 Aimed at the problem of losing target caused by template drift in tracking with matching method, a template drift suppressing algorithm was put forward based on distance weight Minimum absolute difference (MAD), which improves the traditional MAD principle. In the algorithm, the distance from template border to center was used as weighted parameter for calculating AD (Absolute difference) of real-time image and base image, which enlarged the drift error of mismatched position. The above process can minimize the AD of real position and prevent the template from drifting during template updating. The results show that this algorithm can suppress the template drift effectively in tracking and can track the deformable target stably for a long time. Furthermore, it owns good real-time performance and can be realized in real-time system conveniently.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第10期3894-3899,共6页 Journal of Central South University:Science and Technology
基金 国防重点实验室基金资助项目(9140C80030212ZS9301) 国家青年科学基金资助项目(61101185)
关键词 匹配跟踪 模板更新 相似性准则 模板漂移 match tracking template updating similarity criterion template drift
  • 相关文献

参考文献15

  • 1Matthews I, Ishikawa T ,Baker S. The template update problem[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(6): 810-815.
  • 2Kaneko T, Hori O. Template update criterion for template matching of image sequences[C]//Proc IEEE Int Conf on Pattern Recognition IEEE. Quebec, Canada, 2002: 1-5.
  • 3Haworth C, Peacock A M, Renshaw D. Performance of reference block updating techniques when tracking with the block matching algorithm[C]//Proc IEEE Int Conf on Image Processing. Thessaloniki, Greece: IEEE, 2001: 365-368.
  • 4Liu L K, Feig E. A block based gradient descent search algorithm for block motion estimation in video coding[J]. IEEE Trans on Circuits and Systems for Video Technology, 1996, 6(4): 419-422.
  • 5Rasmussen C, Hager G. Probabilistic data association methods for tracking complex visual objects[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(6): 560-576.
  • 6Jia Z, Balasuriya A, Challa S. Target tracking with bayesian fusion based template matching [C]//Proc IEEE Int Conf on Image Processing. Singapore: IEEE, 2005: Ⅱ-826-829.
  • 7Black M J, Yacoob Y. Recognizing facial expressions in image sequences using local parameterized models of image motion[J]. Int J Computer Vision, 1997, 25(1): 23-48.
  • 8Peacock A M. Reference block updating when tracking with block matching algorithm[J]. Electronic Letters, 2000, 36(4): 309-310.
  • 9Nguyen H T, Smeulders A W M. Fast occluded object tracking by a robust appearance filter[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1099-1104.
  • 10Nguyen H T. Occlusion robust adaptive template tracking[C]//Proc IEEE Int Conf on Computer Vision. Vancouver, Canada, IEEE, 2001: 678-683.

同被引文献20

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部