期刊文献+

基于Wistar大鼠动物实验的早期脂肪肝识别研究

Research of Recognition of Mild Fatty Liver Based on Animal Experiment of Wistar Rat
下载PDF
导出
摘要 临床上对早期脂肪肝的准确诊断具有较大难度,文中采用Wistar大鼠动物实验数据,研究早期脂肪肝的识别方法。通过提取肝脏超声射频信号的多个特征参数及假设检验得到的最佳特征矢量,再利用BP神经网络结合模糊函数对脂肪肝程度进行量化。结果表明,正常肝和轻度脂肪肝的识别率分别为97.50和94.29,假阴性率和假阳性率分别为2.5和5.71。 It' s difficult to diagnose mild fatty liver correctly in clinic,so the research of recognition of mild fatty liver by using animal experiment data of Wistar rat is proposed in this paper.Firstly several characteristic parameters are selected from ultrasound radiofrequency signal of livers,then hypothesis testing is used to obtain the best characteristic vector,finally BP neural network combined with Fuzzy function is used to quantify the degree of fatty livers.The results show that,the accuracy rates of classification is 97.50 and 94.29 for normal liver and mild fatty liver separately,and false negative rate and false positive rate is 2.5 and 5.71 separately.
出处 《实验科学与技术》 2012年第5期1-3,82,共4页 Experiment Science and Technology
基金 国家自然科学基金项目资助(30870715 30970781)
关键词 超声射频信号 脂肪肝 BP神经网络 模糊函数 ultrasonic radiofrequency signal mild fatty liver neural network fuzzy function
  • 相关文献

参考文献8

  • 1闵志方,宋恩民,金人超,李国宽.用于脂肪肝量化分级的B超图像特征提取[J].计算机辅助设计与图形学学报,2009,21(6):752-757. 被引量:4
  • 2Guokuan Li, Yu Luo, Wei Deng, et al. Computer aided diagnosis of fatty liver ultrasonic images based on support vector machine [ C ]//30th Annual International IEEE EMBS Conference, Vancouver: [s. n. ], 2008:4768 -4771.
  • 3林江莉,汪小毅,李德玉,汪天富,郑昌琼,程印蓉.脂肪肝B超图像特征提取研究[J].四川大学学报(工程科学版),2005,37(1):130-134. 被引量:15
  • 4Lang M, Ermert H, Heuser L. In vivo study of on-line liver tissue classification based on envelope power spectrum analysis [ J ]. Ultrasonics Imaging, 1994 (16) : 77 - 86.
  • 5刘志东,罗燕,林江莉,廖晓红.基于超声射频RF信号的脂肪肝分级量化方法[J].四川大学学报(工程科学版),2011,43(S1):160-164. 被引量:7
  • 6Iwasaki M, Takada Y, Hayashi M, et al. Noninvasive e- valuation of graft steatosis in living donor liver transplanta- tion [J]. Transplantation, 2004, 78(10) : 1501 - 1505.
  • 7Xiu Qun Xie, Yah Luo, JieRong Quan, et al. SD Rats' Fatty Liver Tissue Classification based on radiofrequency signal[ C]//D. Jin and S. Lin. Advances in Computer Sci- ence and Information Engineering. [ s. 1. ]: Springer Press, 2012:643-647.
  • 8DeanTa, GuohuiZhou, WdngWeiqi. Measurement of spectral maximum shift of ultrasonic backscatter signals in cancellous bone[ C]//Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Con- ference, Shanghai: [ s. n. ], 2005 : 2703 - 2706.

二级参考文献32

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部