期刊文献+

基于自回归支持向量机的结构损伤诊断 被引量:1

Structural damage detection with autoregressive support vector machines
原文传递
导出
摘要 将自回归时间序列(AR)模型和支持向量机方法结合应用于结构的损伤诊断,以一个3层框架结构为分析对象,模拟两种损伤模式:初始线性结构发生质量变化和初始非线性结构发生质量变化.首先对实验中采集到的加速度信号建立AR模型,从而提取模型参数作为损伤特征,再利用支持向量机进行损伤诊断.结果表明,在小样本情况下基于自回归支持向量机进行结构非线性损伤诊断,能够得到很好的结果. The autoregressive(AR)time series model and support vector machine(SVM) are applied to detect the damage pattern.With a three-story frame structure as an analysis object,two damage patterns i.e.initial linear structure with mass varying and initial nonlinear structure with mass varying are simulated.According to the need of damage detection,the AR model of acceleration signals collected from the experiments is established.Then the AR coefficients are extracted as damage features and SVM is used to detect damage.The AR-SVM method for the insufficient training samples is proved to be practical and efficient on structure nonlinear damage detection.
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2012年第5期623-626,共4页 Engineering Journal of Wuhan University
基金 国家自然科学基金项目(编号:51078293)
关键词 结构损伤诊断 支持向量机 自回归模型 模式识别 structural damage detection support vector machines autoregressive model pattern recognition
  • 相关文献

参考文献6

  • 1Charles R, Farrar, Keith Worden. An introduction to structural health monitoring [J].Philosophical Trans- actions of the Royal Society A, 2007,365:303-315.
  • 2张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272
  • 3Worden K, Lane A J. Damage identification using support vector machine [J]. Smart Materials and Structures, 2001,10 :540-547.
  • 4zKrishnan Nair K, Anne S Kiremidjian, Kincho H Law. Time series-based damage detection and localiza- tion algorithm with application to the ASCE bench- mark structure[J]. Journal of Sound and Vibration, 2006, 291(1-2) :349-368.
  • 5杨叔子,吴雅,轩建平,等.时间序列分析的工程应用(上,下)[M].武汉:华中科技大学出版社,2007.
  • 6马高,屈文忠,陈明祥.基于时间序列的结构损伤在线诊断[J].武汉大学学报(工学版),2008,41(1):81-85. 被引量:15

二级参考文献6

共引文献2285

同被引文献9

  • 1Chu S Y,Lo S C.Application of real-time adaptive identification technique on damage detection and structural health monitoring[J].Structural Control and Health Monitoring,2009,16(3):154-177.
  • 2Yang J N,Lin S L.Identification of parametric variations of structures based on least squares estimation and adaptive tracking technique[J].Journal of Engineering Mechanics-ASCE,2005,131(3):290-298.
  • 3Yang J N,Huang H W.Adaptive quadratic sum-squares error for structural damage identification[J].Journal of Engineering Mechanics-ASCE,2009,135(2):67-77.
  • 4Huang H W,Yang J N,Zhou L.Comparison of various structural damage tracking techniques based on experimental data[J].Smart Structures and Systems,2010,6(9):1057-1077.
  • 5Lu K C,Loh C H,Yang Y S,et al.Real-time structural damage detection using wireless sensing and monitoring system[J].Smart Structures and Systems,2008,4(6):759-777.
  • 6Huang C S,Huang S L,Su W C,et al.Identification of time-variant modal parameters using time-varying autoregressive with exogenous input and low-order polynomial function[J].Computer-Aided Civil and Infrastructure Engineering,2009,24(7):470-491.
  • 7Lei Y,Lei J Y,Song Y.Element level structural damage detection with limited observations and with unknown inputs:art no65321X[C]//Health Monitoring of Structural and Biological Systems 2007,6532.San Diego,CA,2007:X5321.
  • 8杜永峰,李万润,李慧,刘迪.基于时间序列分析的结构损伤识别[J].振动与冲击,2012,31(12):108-111. 被引量:31
  • 9尹强,周丽.基于ASNLSE方法的橡胶隔震结构损伤识别[J].振动.测试与诊断,2012,32(5):730-735. 被引量:8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部