期刊文献+

淬火条件及停放时间对B93пч铝合金性能的影响 被引量:1

Influences of Quenching Condition and Delay Time on Properties of B93пч Aluminum Alloy
下载PDF
导出
摘要 研究了不同固溶温度和时间、淬火水温、淬火转移时间及淬火后停放时间对B93пч铝合金力学性能和电学性能的影响。结果表明,该合金最佳的固溶处理制度为470℃保温40 min;淬火水温为40℃时,合金锻件能获得较好的强度和塑性配合,且电导率较高;即时淬火效果最好,因淬火转移时间越长,合金性能下降越明显;在室温条件下随着停放时间的延长,合金性能总体呈下降趋势,若停放时间控制在2 h以内或者24 h以上,合金性能稳定,下降不明显。 Effects of various conditions of solution and quench treatment on mechanical properties and conductivity of B93пчaluminum alloys were investigated, which including solution time and temperature, water temperature and transfer time during quench, as well as delay time after quench. It reveals that optimal treatment condition of the alloy is heating at 470 ℃ for 40 minutes. Quenching in water of 40 ℃ brings the alloy good combination of strength and plasticity, and also high conductivity. Though the best quenching effect, properties of alloy will decrease with the increase of transfer time. Moreover, at room temperature the strength of alloy is on a downward trend with the increase of delay time after quench expands, and the properties is relatively stable when aging treatment is carried out within 2 hours or more than 24 hours after quench.
出处 《湖南工业大学学报》 2012年第4期18-21,共4页 Journal of Hunan University of Technology
基金 湖南工业大学大学生研究性学习和创新性实验计划基金资助项目(2012-37)
关键词 B93пч铝合金 淬火条件 力学性能 电导率 B93 пч aluminum alloy quench condition mechanical property conductivity
  • 相关文献

参考文献11

  • 1Heinz A, Haszler A, Keidel C, et al. Recent Development in Aluminum Alloys for Aerospace Applications[J]. Materials Science and Engineering: A, 2000,280(1): 102- 107.
  • 2Staley J T, Liu J, Hunt W H. Aluminum Alloys for Aerostructures[J]. Advanced Materials and Processes, 1997, 152(4): 17-20.
  • 3蹇海根,谢幸儿,尹志民,胡曼弘,姜锋.5B01铝合金方管型材的热挤压温度试验[J].湖南工业大学学报,2011,25(4):9-12. 被引量:3
  • 4弗里良捷尔.高强度变形铝合金[M].吴学,译.上海:上海科学技术出版社,1963:6-9.
  • 5Fridlyander I N. Russian Aluminum Alloys for Aerospace and Transport Applications[J]. Materials Science Forum, 2000, 331/332/333/334/335/336/337: 921-926.
  • 6林高用,彭大暑,魏圣明,韩红阳,张辉.强化固溶处理对7075铝合金组织的影响[J].金属热处理,2002,27(11):30-33. 被引量:41
  • 7Papazian J M. Differential Scanning Calorimetry Evaluation of Retrogression and Re-Aged Microstructures in Aluminum Alloy 7075[J]. Materials Science and Engineering, 1986, 79(1): 97-104.
  • 8陈康华,刘红卫,刘允中.强化固溶对7055铝合金力学性能和断裂行为的影响[J].中南工业大学学报,2000,31(6):528-531. 被引量:57
  • 9Fridlyander I N, Senatorova O G. Development and Application of High-Strength A1-Zn-Mg-Cu Alloys[J]. Materials Science Forum, 1996, 217/218/219/220/221/ 222: 1813-1818.
  • 10Wei Qiang, Xiong Baiqing, Zhang Yong' an, et al. Production of High Strength A1-Zn-Mg-Cu Alloys by Spray Forming Process[J]. Trans Nonfrrous Met Soc China, 2001, 11(2): 258-261.

二级参考文献21

  • 1唐明君,吉泽升,吕新宇.5×××系铝合金的研究进展[J].轻合金加工技术,2004,32(7):1-7. 被引量:54
  • 2宋禹田,赵海滨.铝合金挤压管材内擦伤的分析[J].轻合金加工技术,2005,33(1):38-41. 被引量:6
  • 3吴一雷,李永伟,强俊,李春玉.超高强度铝合金的发展与应用[J].航空材料学报,1994,14(1):49-55. 被引量:90
  • 4邱惠中,吴志红.航天用高性能金属材料的新进展[J].宇航材料工艺,1996,26(2):18-23. 被引量:30
  • 5库德良绍夫ВГ 高云震等(译).铝合金断裂韧性[M].北京:冶金工业出版社,1980..
  • 6《轻金属材料加工手册》编写组.轻金属材料加工手册[M].北京:冶金工业出版社,1976:51-57.
  • 7Wert J A,Paton N E,Hamilton C H and Mahoney M W.Grain Refinement of 7075 Aluminum Alloy with Thermo-mechanical Processing[J].Metall Trans.,1981,12A:1267-1276.
  • 8Wert J A.Thermo-mechanical Processing of Heat-treatable Aluminum Alloys for Grain Size Control[A].Ed.Chia E H and McQueen H J.Micro-structural Control in Aluminum Alloys[C].New York,Metall.Soc.Inc.,1985,2:67-94.
  • 9Zwickau E C and Freiberg U T.Possibilities for the calculation heat treatment diagrams for industrial AlZnMg(Cu) alloys[J].Aluminum,1999,75:90-96.
  • 10Uchida H and Yoshida H.Heat treatment of aluminum alloys [J].Sumitomo Light Metal Technical Reports,1997,38:177.

共引文献97

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部