期刊文献+

随机效应生长曲线模型的一个注记(英文) 被引量:1

A Note on Random Effects Growth Curve Models
下载PDF
导出
摘要 讨论回归系数估计的稳健性一直是回归分析中的一个热门话题.对于含随机效应的生长曲线模型,由于其响应变量观测之间不独立使得该问题的讨论异常困难,特别是当其设计矩阵非满秩时.本文不仅给出了当设计阵非满秩时广义最小二乘估计等于最佳线性无偏估计的充要条件,而且还在误差协差阵为任意正定阵的一般假设下给出了广义最小二乘估计与极大似然估计相等的充要条件.利用这些结论我们得到了在几种常见协差阵假定下广义最小二乘估计与极大似然估计相等的推论.文章最后还分别在设计阵满秩和非满秩情形下对所得理论结果进行了模拟演示. The robustness of regression coefficient estimator is a hot topic in regression analysis all the while. Since the response observations are not independent, it is extraordinarily difficult to study this problem for random effects growth curve models, especially when the design matrix is non-full of rank. The paper not only gives the necessary and sufficient conditions under which the generalized least square estimate is identical to the the best linear unbiased estimate when error covariance matrix is an arbitrary positive definite matrix, but also obtains a concise condition under which the generalized least square estimate is identical to the maximum likelihood estimate when the design matrix is full or non-full of rank respectively. In addition, by using of the obtained results~ we get some corollaries for the the generalized least square estimate be equal to the maximum likelihood estimate under several common error covariance matrix assumptions. Illustrative examples for the case that the design matrix is full or non-full of rank are also given.
出处 《应用概率统计》 CSCD 北大核心 2012年第5期520-534,共15页 Chinese Journal of Applied Probability and Statistics
基金 supported by Fundamental Research Funds for the Central Universities the Research Funds of Renmin University of China(10XNL018) Project of Humanities Social Science Foundation of Hubei Provincial Department of Education(2012G078)
关键词 广义最小二乘估计 极大似然估计 最佳线性无偏估计 相等条件. Generalized least square estimate, maximum likelihood estimate, the best linear unbiased estimate, identical conditions.
  • 相关文献

参考文献19

  • 1Fujisawa, H., Likelihood ratio criterion for mean structure in the growth curve model with random effects, Journal of Multivariate Analysis, 60(1997):90-98.
  • 2Geisser, S., Sample reuse procedures for prediction of the unobserved portion of a partially observed vector, Biometrika, 68(1981):243-250.
  • 3Giolo, S.R., Henderson, R. and Demetrio, C.G.B., Mixed-effects growth curves in the valuation of Nellore sires, Scientia Agricola, 66(2009):84-89.
  • 4Ip, W.C., Wu, M.X., Wang, S.G. and Wong, H., Estimation for parameters of interest in random effects growth curve models, Journal of Multivariate Analysis, 98(2007):317-327.
  • 5Kariya, T., Testing in the Multivariate General Linear Model, Tokyo: Kinokuniya Printing Company, 1985.
  • 6Khatri, C.G., A note on a MANOVA model applied to problems in growth curve, Annals of the Institute of Statistical Mathematics, 18(1966):75-86.
  • 7Laird, N.M. and Ware, J.H., Random-effects models for longitudinal data, Biometrics, 38(1982):963-974.
  • 8Lee, J.C., Prediction and estimation of growth curve with special covariance structure, Journal of the American Statistical A ssociation, 83(1988):432-440.
  • 9Lee, J.C. and Geisser, S., Growth curve prediction, Sankhya A, 34(1972):393-412.
  • 10Liski, E. P., Estimation from incomplete data in growth curve models, Communications in Statistics - Theory and Methods, 14(1985):13-27.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部