期刊文献+

一类分数阶微分方程非奇次边值问题正解的存在性(英文)

Existence of Positive Solutions to a Class of Nonhomogeneous Boundary Value Problem of Fractional Differential Equation
下载PDF
导出
摘要 考虑非线性分数阶微分方程非奇次边值问题正解的存在性:■,其中1<α2,0γ1,αγ+1是两个实数,Dα0+是标准的Riemann-Liouville微分,且f:[0,1]×[0,∞)→[0,∞)是连续函数.应用Leray-Schauder非线性选择定理和Banach不动点,获得了分数阶微分方程非奇次边值问题存在正解一些充分条件.作为应用,我们给出了几个例子并应用我们的定理证明了这些方程存在正解. In this paper, we are concerned with the existence of nonhomogeneous boundary value problem positive solutions of nonlinear fractional differential equation : D^α_0+u(t)+f(t,u(t))=0, 0〈t〈1, u(0)=0,D^γ_0+u(t)|i=1=b where 1 〈 α≤2,0 ≤γ ≤1 ,α ≥ γ + 1 are two real numbers, D^α_0+ is the standard Riemann- Liouville differentiation, and f: [0, 1 ]× [0, ∞) →[0, ∞ ) is a continuous function. By using nonlinear alternative of Leray - Schauder type and Banaeh fixed point theo- rem, some suffcient conditions ensuring the existence of positive solution are established for nonhomogeneous boundary value problem of fractional differential equation. As an application, some examples are given to illustrate our results.
作者 刘智钢
机构地区 湘南学院数学系
出处 《湘南学院学报》 2012年第5期1-6,共6页 Journal of Xiangnan University
基金 湖南省自然科学基金项目(10JJ6007,11JJ3005)
关键词 分数阶微分方程 正解 边值问题 fractional differential equation positive solution boundary value problem.
  • 相关文献

参考文献14

  • 1A Babakhani and V D Gejji. Existence of positive solution of nonlinear fractional differential equations[J]. J Math Anal Appl, 2003,278: 434 - 442.
  • 2K S Miller and B Ross. An Introduction to the Fractional Caculus and Fractional Differential Equations[M]. New York: Wiley, 1993.
  • 3I Podlubny. Fractional Differential Equations, Mathematics in Seience and Engineering[ M]. New York, London, Toronto: Academic Press, 1999.
  • 4D Dellxsco. Fractional calculus and function spaces[J]. J Fract Cale, 1996, 6:45 - 53.
  • 5D Delbosco, L Rodino. Existence and uniqueness for a nonlinear fractional differential equation[J]. J Math Anal Appl, 1996, 204: 609- 625.
  • 6A M A El- Sayed. Nonlinear functional differential equations of arbitrary orders[ J]. Nonlinear Anal, 1998,33:181- 186.
  • 7A A Kilbas, O I Mariehev, S G Samko. Fraetional Integral and Derivatives (Theory and Applications)[ M]. Switzerland: Gordon aud Breach, 1993.
  • 8A M Nakhushev. The StumCLiouville problem for a seeond order ordinary differential equation with fractional derivatives in the lower lerms [J]. Dokl Akad Nauk SSSR, 1977, 234:308 - 311.
  • 9I Podlubny. The Laplace transform method for linear diffierential equations of the fractional order[ M]. Kosice: Inst Expe Phys, Slov Aead Sci, UEF-02-94, 1994.
  • 10S Q Zhang. The existence of a positive solution for a nonlinear fractional differential equation[J]. J Math Anal Appl, 2000, 252:804 - 812.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部