期刊文献+

一类Green函数变号的二阶两点边值问题正解的存在性

Existence of Positive Solution for a Second Order two Point Boundary Value Problem with Sign-changing Green's Function
下载PDF
导出
摘要 讨论了Green函数变号的二阶两点边值问题:其中f:[0,1]×[0,+∞)→[0,+∞)连续.利用Guo-Krasnosel'skii不动点定理得到了正解的存在性. This paper discusses the following second order two point boundary value problem with sign-changing Green's function: {x" + f(t,x(t)) = 0,t∈[0,1] x(0) = 0,x'(1) =-x'(0) where f:[0,1]×[0,+∞)→[0,+∞) is continuous.The existence of positive solution is obtained via Guo-Krasnosel'skii fixed point theorem.
出处 《应用泛函分析学报》 CSCD 2012年第2期113-119,共7页 Acta Analysis Functionalis Applicata
关键词 Green函数变号 正解 不动点定理 边值问题 sign-changing Green's function positive solution fixed point theorem boundary value problem
  • 相关文献

参考文献6

  • 1Infante G, Webb J R L. Three point boundary value problems with solutions that change sign[J]. J Integral Equations Appl, 2003, 15(1): 37-57.
  • 2Infante G, Webb J R L. Nonzero solutions of Hammerstein integral equations with discontinuous kernels[J]. J Math Anal Appl, 2002, 272(1): 30-42.
  • 3Guidotti P, Merino S. Gradual loss of positivity and hidden invariant cones in a scalar heat equation[J]. Differential Integral Equations, 2000, 13{11-12): 1551-1568.
  • 4Infante G, Webb J R L. Loss of positivity in a nonlinear scalar heat equation[J]. Nonlinear Differential Equations Applications, 2006, 13(2): 249-261.
  • 5Fan H X, Ma R Y. Loss of positivity in a nonlinear second order ordinary differential equations[J]. Nonlinear Analysis, 2009, 71{1-2): 437-444.
  • 6Guo D, Lakshmikantham V. Nonlinear Problems in Abstract Cones[M]. San Diego: Academic Press, 1988.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部