摘要
为了刻画和研究平移空间的线性结构,给出了平移半群的概念,在平移半群为满足相消律的交换半群的平移空间上,引入了整数系数的线性结构;再加之,在平移空间上可利用距离在一定条件下构造出线性结构,引入了次范整线性空间的定义;并且证明了平移空间是次范整线性空间的充要条件是它的平移半群是满足相消律的交换半群.
In order to describe the linear structure on translation spaces,this paper provides the concept of the translation semi-group;The linear structures of integer coefficient is introduced by the translation spaces on the translation semi-group that is satisfied with cancellation law.Furthermore, it is proved that linear structures can be constructed by means of metrics on translation spaces under certain conditions.The concept of sub-normed Z-linear spaces is introduced and it is clarified that a translation space is a sub-normed Z-space if and only if its translation semi-group is the commutative semi-group that is satisfied with cancellation law.
出处
《应用泛函分析学报》
CSCD
2012年第2期157-160,共4页
Acta Analysis Functionalis Applicata
基金
陕西省自然科学基金青年项目(2010JQ1005)
关键词
平移半群
交换半群
平移空间
次范整线性空间
translation semi-group
commutative semi-group
translation space
sub-normed Zlinear spaces