期刊文献+

交换半群上的次范整线性空间

Sub-normed Z-linear Spaces on Commutative Semi-group
下载PDF
导出
摘要 为了刻画和研究平移空间的线性结构,给出了平移半群的概念,在平移半群为满足相消律的交换半群的平移空间上,引入了整数系数的线性结构;再加之,在平移空间上可利用距离在一定条件下构造出线性结构,引入了次范整线性空间的定义;并且证明了平移空间是次范整线性空间的充要条件是它的平移半群是满足相消律的交换半群. In order to describe the linear structure on translation spaces,this paper provides the concept of the translation semi-group;The linear structures of integer coefficient is introduced by the translation spaces on the translation semi-group that is satisfied with cancellation law.Furthermore, it is proved that linear structures can be constructed by means of metrics on translation spaces under certain conditions.The concept of sub-normed Z-linear spaces is introduced and it is clarified that a translation space is a sub-normed Z-space if and only if its translation semi-group is the commutative semi-group that is satisfied with cancellation law.
出处 《应用泛函分析学报》 CSCD 2012年第2期157-160,共4页 Acta Analysis Functionalis Applicata
基金 陕西省自然科学基金青年项目(2010JQ1005)
关键词 平移半群 交换半群 平移空间 次范整线性空间 translation semi-group commutative semi-group translation space sub-normed Zlinear spaces
  • 相关文献

参考文献7

二级参考文献17

  • 1王国俊,白永成.平移空间的线性结构[J].数学学报(中文版),2005,48(1):1-10. 被引量:32
  • 2Wang G. J., Wang W., Generalization of the Scheerffer's theorem, Indian J. Math., 1999, 41(3): 407-414.
  • 3Wang G. J., Bai Y. C., Linear structure on translation spaces, Acta Mathematica Sinica, Chinese Series, 2005, 48(1): 1-10.
  • 4Wang G. J., Wang W., Generalization of the Scheerffer's theorem, Indian J Math., 1999, 41(3.): 407-414.
  • 5Wang G. J., Bai Y. C., Linear structure on translation spaces, Acta Mathematica Sinica, Chinese Series 2005, 48(1): 1-10.
  • 6Li H., Fang J. X., Hahn-Banach theorem on Abel group, Acta Mathematica Sinica, Chinese Series, 2008 51(5): 965-970.
  • 7Kelley J. L., General Topology, New York: Springer-Verlag, 1995.
  • 8Wang G J, Wang W, Generalization of the Scheeffer's theorem, Indian J Math,1999, 41(3): 407-414.
  • 9Wilanaskv A,Functional analysis, New York: Blaisdell Publishing Company, 1964.
  • 10Kelley J L, General topology, New York: Springer-Verlag, 1955.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部