期刊文献+

高阶复系数Swift-Hohenberg方程的精确行波解 被引量:4

The exact travelling solution of the high order complex Swift-Hohenberg equation
下载PDF
导出
摘要 非线性方程的求解一直是数学及物理学科中的一类重要问题,尤其是关于非线性方程精确解的研究,研究利用(G′/G)-展开法寻找高阶非线性复系数Swift-Hohenberg方程的精确解,通过(G′/G)-展开法取得了高阶非线性复系数Swift-Hohenberg方程的更具一般形式的精确解. Abstract: Solving nonlinear equations is a class of important problem in mathematics and physics, especially studying the exact solutions of nonlinear equations. The new exact solutions of the high-order nonlinear Swift-Hohenberg equation are sought by using(G/G)-expansion method in this paper. Some more generalized formsolutions of the high-order Swift-Hohenberg equation are obtained by using(G/G )-expansion method.
作者 施业琼
出处 《广西工学院学报》 CAS 2012年第3期15-19,共5页 Journal of Guangxi University of Technology
基金 国家自然科学基金项目(11061028) 广西自然科学基金项目(018137) 广西教育厅科研课题项目(201010LX250)资助
关键词 (1+1)维高阶复Swift-Hohenberg方程 (G′ G)-展开法 精确解 (1 +1 )-dimensional high order complex Swift-Hohenberg equation (G/G)-expansion method exactsolution
  • 相关文献

参考文献4

二级参考文献25

  • 1王明亮,周宇斌.一个非线性波动方程的精确解[J].兰州大学学报(自然科学版),1996,32(1):1-5. 被引量:14
  • 2Wang M L. Exact solutions for a compound Kd VBurgers equation[J]. Phys Lett A, 1996, 213(6):279-287.
  • 3Parkes E J, Duffy B R. The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations[J]. Phys Lett A, 2002,280(8): 229-217.
  • 4Fan E G. Applications of the Jacobi elliptic function method to the special-type nonlinear equations[J].Phys Lett A, 2002, 305(6): 277-212.
  • 5Liu S K, Fu Z T, Liu S D, et al. Jacobi elliptic function expansion and periodic solutions of nonlinear wave equations[J]. Phys Lett A, 2001, 289(1-2):69.
  • 6Fu Z T, Liu S K, Liu S D, et al. New Jacobi elliptic function expansion method and new periodic wave solutions of nonlinear wave equations[J]. Phys Lett A, 2001, 290(1-2): 72.
  • 7Zhou Y B, Wang M L, Wang Y M. Periodic wave solutions to a coupled KdV equations with variable coefficients[J]. Phys Lett A, 2003, 308(1-2): 31.
  • 8Zhou Y B, Wang M L, Miao T D. The periodic wave solutions and solitary wave solutions for a class of nonlinear partial differential equations[J]. Phys Lett A, 2004, 323(1-2): 77.
  • 9Wang M L, Zhou Y B. The periodic wave solutions for the Klein-Gordon-Schrodinger equations[J]. Phys Lett A, 2003, 318(1-2): 84.
  • 10Kenichi M A, Nail Akhmediev. Exact soliton solutions of the one-dimensional complex SwiftHohenberg equation[J]. Phys D, 2003, 176(1-2): 44-66.

共引文献355

同被引文献22

  • 1张金良,任东锋,王明亮,方宗德.Davey-StewartsonI的周期波解[J].数学物理学报(A辑),2005,25(2):213-219. 被引量:14
  • 2陈玉娟,高洪俊,朱月萍.复Swift-Hohenberg方程在一些Banach空间内的指数吸引子[J].应用数学学报,2007,30(4):699-706. 被引量:3
  • 3Tian B, Ms K Y, Zhao Y T.Gao.Some analytical solutions for the (2+ 1 )-dimensional nonintegrable and integrable dispersive long wave equations [ J ]. 1998,129:133-135.
  • 4Dubrovsky V G, Gramohn A V.Gauge-invariant description of some(2+ 1)-dimensional integrable nonlinear evolution equations [ J ]. J.Phys.A:Math.Theor, 2008, 41:275208.
  • 5Zhi H Y.lie point symmetry and some new solion-like solutiong of the Konopech-Enko-Dubrovsky eqntions [J ].Appl.Math.Comput., 2008,203:931-936.
  • 6Eremenko A.Meromorphic traveling wave solution of the Kuramoto-Sivashinsky equatinon [ J ].Math phys Anal Geom, 2006;278-286.
  • 7Eremenko A.Meromorphic solutions of equation of Bouquet type [J].Teor Funktsii Funk Anal prilozh, 1982,38:48-56.English translation:Amer Math Soe Transl, 1986,133 ( 2): 15-23.
  • 8Eremenko A, Liao L W, Ng T W, Meromorphic solutions of higher order Briot-Bouquet differential equations [ J ] .Arxiv, 2007 (28) : 98.
  • 9Wenjun Yuan, Yezhou Li, Jianming Lin. Meromorphic solutions of an auxiliary ordinary differential equation using complex method [J]. Mathematical Methods in the Applied Sciences, 2013(36): 1776-1782.
  • 10Lang S. Elliptcic Function[M]. 2nd Ed.New York :Springer Verlag, 1987.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部