期刊文献+

柔性和摩擦力不确定条件下RBF神经网络自适应轨迹跟踪方法 被引量:15

RBF Neural Network Adaptive Trajectory Tracking Control under Conditions of Uncertain Compliance and Friction
下载PDF
导出
摘要 提出一种基于径向基神经网络(Radial basis function,RBF)的力/位置混合自适应控制方法并用于机器人轨迹跟踪控制,解决机器人柔性末端执行器轨迹跟踪过程中柔性和摩擦力模型难以精确描述的问题。RBF神经网络是一种高效的前馈式神经网络,具有其他前向网络所不具有的非线性逼近性能和全局最优特性,并且网络结构简单,训练速度快。设计一种基于RBF神经网络非线性逼近能力来估计模型中的不确定参数的自适应控制器,给出控制器中神经网络权值更新规则,并证明所设计控制器输出力和位置误差的最终一致有界性。将该控制器应用于风管清扫机器人仿真试验,结果表明该自适应控制器能很好地用于柔性和摩擦力不确定条件下轨迹跟踪控制,与传统自适应控制方法相比具有更精确的跟踪特性和更强的鲁棒性。 A force/position hybrid adaptive control method based on radial basis function(RBF) neural network is proposed to solve the problem of difficulties to precisely describe the compliance and friction for robot terminal during trajectory tracking process.RBF neural network is an efficient feed-forward neural network with non-linear approximation and global optimization characteristics,which is not provided by other feed-forward networks,which is simple in network structure,and rapid in training speed.An adaptive controller is designed that relies on the nonlinear approximation ability of the RBF neural network to estimate the uncertainty factors in the models,the update rules for the weights of the controller neural network is provided and its finally uniform boundedness of the errors of the controller output force and position is proved.The controller is applied to a duct cleaning robot for simulation experiments.Simulation results shows that the adaptive controller demonstrates superior tracking precision and robustness compared with traditional adaptive controller.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2012年第19期23-28,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(60905050) 长沙科技计划重点(长财企指[2009]85号) 中央高校基本科研业务费资助项目
关键词 柔性和摩擦力 RBF神经网络 位混合控制 自适应控制 Compliance and friction RBF neural network Force/position hybrid control Adaptive control
  • 相关文献

参考文献14

  • 1KWAN C M, YESILDIREK A, LEWIS F L. Robus force/motion control of constrained robots using neura net network[J]. Journal of Robotic Systems, 1999, 12(16): 697-714.
  • 2CHIU C S, LIAN K Y, WU T C. Robust adaptive motion/ force tracking control design for uncertain constrained robot manipulators [J]. Automatica, 2004, 40 : 2111-2119.
  • 3孙炜,王耀南.模糊小波基神经网络的机器人轨迹跟踪控制[J].控制理论与应用,2003,20(1):49-53. 被引量:22
  • 4STEFANO C, BRUNO regulation of compliant Trans. Automatic, 1994, S, LUIGI V. Force/position robot manipulators[J]. IEEE 39(3): 647-652.
  • 5ZOE D, SUGURU A. A position/force control for a robot finger with soft tip and uncertain kinematics[J]. Journal of Robotic Systems, 2002, 44(4): 115-131.
  • 6STEFANO C, BRUNO S, LUIGI V. Force and position tracking: Parallel control with stiffness adaptation[J].IEEE Control Systems, 1998, 18(1): 27-33.
  • 7SEUL J, HSIA T C. Robust neural force control scheme under uncertainties in robot dynamics and unknown environment[J]. IEEE Trans. Ind. Electron., 2000, 47(2): 403-412.
  • 8MOSTEFAI L, DENAI M, HORI Y. Robust tracking controller design with uncertain friction compensation based on a local modeling approach[J]. Mechatronics, IEEE/ASME Trans., 2009, 15: 746-756.
  • 9ALONGE F, IPPOLITO F D, RAIMONDI F. Composite adaptive control of robot manipulators[J]. Control Engineering Practice, 2004, 12: 1091-1100.
  • 10王宗义,李艳东,朱玲.非完整移动机器人的双自适应神经滑模控制[J].机械工程学报,2010,46(23):16-22. 被引量:25

二级参考文献27

  • 1李世华,田玉平.非完整移动机器人的有限时间跟踪控制算法研究[J].控制与决策,2005,20(7):750-754. 被引量:19
  • 2刘金国,王越超,李斌,马书根.灾难救援机器人研究现状、关键性能及展望[J].机械工程学报,2006,42(12):1-12. 被引量:119
  • 3LIU Jinkun,HE Yuzhu.FUZZY GLOBAL SLIDING MODE CONTROL BASED ON GENETIC ALGORITHM AND ITS APPLICATION FOR FLIGHT SIMULATOR SERVO SYSTEM[J].Chinese Journal of Mechanical Engineering,2007,20(3):13-17. 被引量:14
  • 4Slotine J E,Li W.应用非线性控制[M].程代展,译.北京:机械工业出版社,2006:45-51.
  • 5PARK B S,YOO S J,PARK J B,et al.Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty[J].IEEE Transactions on Control Systems Technology,2009,17(1):207-214.
  • 6DAS T,KAR I N.Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots[J].IEEE Transactions on Control Systems Technology,2006,14(3):501-510.
  • 7YU S H,LIU S,XU H.Adaptive fuzzy trajectory tracking control of uncertain nonholonomic mobile robots[C] // 2008 6th IEEE International Conference on Industrial Informatics,July 13-16,2008,Daejeon,South Korea.Piscataway:IEEE,2008:481-486.
  • 8MARTINS N A,BERTOL D,LOMBARDI W,et al.Trajectory tracking of a nonholonomic mobile robot with parametric and nonparametric uncertainties:A proposed neural control[C] // 16th Mediterranean Conference on Control and Automation,June 25-27,2008,Congress Centre,Ajaccio,France.Piscataway:IEEE,2008:315-320.
  • 9HU H,WOO P Y.Fuzzy supervisory sliding-mode and neural-network control for robotic manipulators[J].IEEE Transactions of Industrial Electronics,2006,53(3):929-940.
  • 10AK A G,CANSEVER G.Three link robot control with fuzzy sliding mode controller based on RBF neural network[C] // Proceedings of the 2006 IEEE International Symposium on Intelligent Control,October 4-6,2006,Munich,Germany.Piscataway:IEEE,2006:2719-2724.

共引文献113

同被引文献74

引证文献15

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部