期刊文献+

采用优化经验模态分解的电力谐波辨识方法 被引量:10

The method for harmonic identification based on optimal empirical mode decomposition
下载PDF
导出
摘要 电力谐波的准确辨识对智能用电具有重要的研究价值和意义。针对基于屏蔽信号的经验模态分解(M-EMD)在谐波辨识中幅值误差较大、模态分解不完整以及屏蔽信号构建参数依赖经验值等问题,提出对待分析信号进行滤波和模态预提取,并采用协同混沌粒子群优化算法(CCPSO)对屏蔽信号的构建参数进行寻优。电力谐波仿真辨识实验证明,与M-EMD算法相比,文中所述的IM-EMD算法在谐波辨识的准确度和可靠性上有了明显提高。 Harmonic analysis is very important to smart electricity.This paper proposes a hybrid algorithm to deal with the problems of empirical mode decomposition based masking signal(M-EMD) used in harmonic analysis,such as huge amplitude error,imperfect decomposition and the dependence on empirical values in building masking signal.The proposed method applies the method of chaos cooperation particle swarm optimization(CCPSO) to search proper parameters for masking signals,and employs filter and frequency pre-extract to the original signal.The synthetic experiments demonstrate that the method proposed in this paper gets better accuracy and reliability.
出处 《电子测量与仪器学报》 CSCD 2012年第10期858-863,共6页 Journal of Electronic Measurement and Instrumentation
基金 教育部博士点基金(编号:20090002110016)资助项目
关键词 谐波辨识 经验模态分解 屏蔽信号 协同混沌粒子群优化 harmonic analysis empirical mode decomposition masking signals chaos cooperation particle swarm optimization
  • 相关文献

参考文献9

  • 1JULIO B, RAM6N I D. Analysis of harmonics in power systems using the wavelet-packet transform [J]. IEEE Trans. on Instrumentation and Measurement, 2008, 57(1) 63-69.
  • 2黄南天,徐殿国,刘晓胜.基于改进多层前馈神经网络的电能质量扰动分类[J].电子测量与仪器学报,2009,23(10):62-66. 被引量:8
  • 3易吉良,彭建春,罗安,谭会生.电能质量信号的改进S变换降噪方法[J].仪器仪表学报,2010,31(1):32-37. 被引量:26
  • 4NILANJAN S, SIDDHARTH S, RIBEIRO P E An im- proved hilbert-huang method for analysis of time- vary- ing waveforms in power quality [J]. IEEE Trans. on Power Systems, 2007, 22(4): 1843-1850.
  • 5JIANG H M, KWONG C K, CHEN Z Q, et al. Chaos particle swarm optimization and T-S fuzzy modeling ap- proaches to constrained predictive control [J]. Expert Systems with Applications, 2012: 194-201.
  • 6SUN L, YOSHIDA S, CHENG X CH, et al. A coopera- tive particle swarm optimizer with statistical variable in- terdependence learning[J]. Information Science, 2012: 20-39.
  • 7CHENG W J, DING J ,KONG W J,et al. An adaptive chaotic PSO for parameter optimization and feature ex- traction of LS-SVM based modeling [C]. 2011 American Control Conference, 2011:3263-3268.
  • 8蔡艳平,李艾华,张玮,许平.HHT端点效应的最大Lyapunov指数边界延拓方法[J].仪器仪表学报,2011,32(6):1330-1336. 被引量:22
  • 9MUKHOPADHYAY S, BANERJEE S. Global optimiza- tion of an optical chaotic system by chaotic multi swarm particle swarm optimization[J]. Expert Systems with Applications, 2012, 39: 917-924.

二级参考文献30

共引文献51

同被引文献124

引证文献10

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部