期刊文献+

一个用于大位移大转动非线性动力计算的显式梁元 被引量:1

A BEAM ELEMENT WITH EXPLICIT ALGORITHMS FOR LARGE DISPLACEMENT AND LARGE ROTATION DYNAMIC ANALYSIS
原文传递
导出
摘要 为了数值模拟建筑结构倒塌过程中的梁柱构件,建立了一个具有大位移大转动非线性动力计算能力的显式梁元。该梁元基于显式有限元单元理论,采用更新拉格朗日列式,考虑了转动的不可交换性,选用共旋(Co-Rotational)方法分离单元刚体位移和变形位移,通过应力更新算法来考虑材料的非线性。算例表明该梁元力学性能良好,具有一定的工程应用价值。 In order to simulate beams and columns during the process of building collapse, a nonlinear beam element with explicit algorithms was studied. Based on the explicit finite element theory, the element adopted the updated Lagrange formulation, considered the non-swapable rotation and applied the Co-Rotational method to separate the deformation displacement and rigid displacement. The material nonlinearity was considered through the stress-update algorithm. The numerical result shows that the beam element used for the engineering numerical simulation has very good mechanical performances.
出处 《工程力学》 EI CSCD 北大核心 2012年第11期16-20,共5页 Engineering Mechanics
基金 国家"十一五"科技支撑计划课题项目(2006BAJ03A03)
关键词 显式梁元 几何非线性 非线性动力计算 大位移 大转动 explicit beam geometrical nonlinear rotation nonlinear dynamic analysis large displacement large
  • 相关文献

参考文献12

  • 1Bathe K J, Bolourchi S. Large displacement analysis of three-dimensional beam structures [J]. International Journal for Numerical Methods in Engineering, 1979(14): 961 -986.
  • 2Oran C. Tangent stiffness in space flames [J]. Journal of Structural Divisions, ASCE, 1973, 99: 987- 1001.
  • 3沈世钊 陈昕.网壳结构稳定性[M].北京:科学出版社,1998..
  • 4Yoshida Y, Masuda N, Mormoto T, Hirosawa N. An incremental formulation for computer analysis of space framed structures [J]. Journal of Structural Mechanics and Earthquake Engineering, JSCE, 1980, 300:21-32.
  • 5Yang YeongBin, Kuo ShyhRong. Theory and analysis of nonlinear framed structures [M]. Singapore: Prentice Hall, 1994: 506-511.
  • 6Ted Belytschko, Wing Kam Liu, Brian Moran. Nonlinear finite elements for continua and structures [M]. John Wiley & Sons Ltd., 2000: 1-22.
  • 7Ted Belytschko, Schwer L. Large displacement transient analysis of space frames [J]. International Journal for Numerical Methods in Engineering, 1977(11): 65-84.
  • 8Argyris J H. An excursion into large rotations [J]. International Journal of Computer Methods in Applied Mechanics and Engineering, 1982(32): 85- 155.
  • 9Crisfield M A. A consistent co-rotational formulation for non-linear, three-dimensional, beam elements [J]. Computer Methods in Applied Mechanics and Engineering, 1990(81): 131- 150.
  • 10周凌远,李乔.基于UL法的CR列式三维梁单元计算方法[J].西南交通大学学报,2006,41(6):690-695. 被引量:20

二级参考文献24

  • 1ARGYRIS J H. An excursion into large rotations [ J ]. Computer Methods in Applied Mechanics and Engineering, 1982,32(5) : 85-155.
  • 2RANKIN C C, BROGAN F A. An element independent eorotational procedure for the treatment of large rotations [ J ], Journal of Pressure Vessel Technology, 1986,108: 165-174.
  • 3CRISFIELD M A, MOITA G F. A unified co-rotational framework for solids, shells and beams[ J ]. International Journal of Solids and Structures, 1996,33(24) : 2 969-2 992.
  • 4HSIAO K, LIN W Y. Co-rotational finite element formulation for buckling and postbuckling analyses of spatial beams[ J ].Computer Methods in Applied Mechanics and Engineering, 2000,188 (3):567-594.
  • 5FELIPPA C A, HAUGEN B. A unified formulation of small-strain corotational finite elements [ J ]. Theory Computer Methods in Applied Mechanics and Engineering, 2005,194(19) : 2 285-2 335.
  • 6BATHE K J, RAMM E, WILSON E L. Finite element formulations for large deformation dynamic analysis [ J ]. International Journal of Numerical Methods and Engineering, 1975,9 (2) : 353-386.
  • 7BATHE K J. An assessment of current finite element analysis of nonlinear problems in solid mechanics [ C ]//Numerical Solution of Partial Differential Equations. Maryland: University of Maryland, 1975.
  • 8BATHE K J, BOLOURCHI S. Large displacement analysis of three-dimensional beam structures[ J ]. International Journal of Numerical Methods and Engineering, 1979,14 ( 7 ) : 961-986.
  • 9WEMPNER G A. Finite elements, finite rotations and small strains of flexible shells[J]. International Journal of Solids and Structures, 1969,5 : 117-153.
  • 10BELYTSCHKO T, SCHWER L. Non-linear transient finite element analysis with convected co-ordinates[ J]. International Journal of Numerical Methods and Engineering, 1973,7 (9) : 255-271.

共引文献61

同被引文献6

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部