期刊文献+

多目标觅食—返巢机制连续域蚁群算法 被引量:1

Multi-objective function optimization based on ant colony algorithm with foraging-homing mechanism
下载PDF
导出
摘要 受自然界蚂蚁的觅食—返巢生物学特征启发,同时深入了解蚂蚁信息素成分,提出了一种能够解决函数多目标优化问题的改进蚁群算法——多目标觅食—返巢机制连续域蚁群算法(MO-FHACO)。该算法与传统蚁群算法相比,将信息素分为蚁巢信息素和食物信息素,并根据不同信息素设立了不同的释放和寻优机制。通过BNH和TNK问题验证,MO-FHACO算法在Pareto最优前端连续的情况下具有极佳的多目标优化能力;在Pa-reto最优前端不连续的情况下,也能得到较多且散布性较好的Pareto最优解。因此,MO-FHACO算法是一种有效的函数多目标优化算法。 For extending the ability of multi-objective optimization for continuous functions for the ant colony algorithm,this paper proposed an improved ant colony algorithm(MO-FHACO) based on the foraging-homing mechanism inspired by the natural ant colonies who laid the different pheromones.The pheromones were divided into two kinds,i.e.the nest pheromone and the food pheromone,on the path from the nest to the food resource.Therefore,it built the foraging-homing mechanism to find the function optimal value.According to the function test of BNH and TNK,results show that MO-FHACO has the best multi-objective function optimization ability comparison with other intelligence algorithms,if Pareto frontier is continuous.And if Pareto frontier is discontinuous,MO-FHACO still can get good Pareto optimum values.So MO-FHACO is an efficient multi-objective function optimization algorithm.
作者 金浩 刘维宁
出处 《计算机应用研究》 CSCD 北大核心 2012年第11期4038-4040,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(51008017) 中央高校基本科研业务费专项资金资助项目(2012YJS072)
关键词 蚁群算法 连续函数 多目标优化 觅食—返巢机制 ant colony algorithm continuous function multi-objective optimization foraging-homing mechanism
  • 相关文献

参考文献12

  • 1COLORNI A, DORIGO M, MANIEZZO V, et al. Distributed optimization by ant colonies [ C ]//Proc of the 1 st European Conference on Artificial Life. Paris : Elsevier, 1991 : 134-142.
  • 2GAMBARDELLA L M, DORIGO M. Ant-Q:a reinforcement learning approach to the traveling salesman problem [ C ]//Proc of the 12th International Conference on Machine Learning. 1995:252-260.
  • 3THOMAS S, HOLGER H H. MAX-MIN ant system[ J]. Future Generation Computer Systems,2000,16 ( 8 ) :889-914.
  • 4GAMBARDELLA L M, TAILLARD E D, DORIGO M, et al. Ant colonies for the quadratic assignment problem [ J ]. Journal of the Operational Research Society, 1999,50 ( 2 ) : 167-176.
  • 5BILCHEV G, PARMEE I. The ant colony metaphor for searching continuous design spaces [ C ]//Proc of AISB Workshop on Evolutionary Computing. London : Springer-Verlag, 1995:25- 39.
  • 6WANG Lei, WU Qi-di. Ant system algorithm for optimization in continuous space[ C ]//Proc of IEEE International Conference on Control Applications. 2001:395-400.
  • 7HU Xiao-min, ZHANG Jun, CHUANG H S H, et al. SamACO: variable sampling ant colony optimization algorithm for continuous optimizatiort[ J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics,2010,40(6) : 1555-1566.
  • 8XIAO Jing, LI Liang-ping. A hybrid ant colony optimization for continuous domains [ J ]. Expert Systems with Applications, 2011,38 (9) :11072-11077.
  • 9张勇德,黄莎白.多目标优化问题的蚁群算法研究[J].控制与决策,2005,20(2):170-173. 被引量:59
  • 10金浩,刘维宁.基于觅食-返巢机制连续域蚁群算法[J].计算机工程与应用,2012,48(1):24-26. 被引量:6

二级参考文献22

  • 1陈烨.用于连续函数优化的蚁群算法[J].四川大学学报(工程科学版),2004,36(6):117-120. 被引量:67
  • 2张勇德,黄莎白.多目标优化问题的蚁群算法研究[J].控制与决策,2005,20(2):170-173. 被引量:59
  • 3李艳君,吴铁军.An adaptive ant colony system algorithm for continuous-space optimization problems[J].Journal of Zhejiang University Science,2003,4(1):40-46. 被引量:20
  • 4王跃宣,刘连臣,牟盛静,吴澄.处理带约束的多目标优化进化算法[J].清华大学学报(自然科学版),2005,45(1):103-106. 被引量:55
  • 5Dorigo M, Maniezzo V, Colorni A. The ant system:Optimization by a colony of cooperating agents [J].IEEE Trans on SMC, 1996,26(1):28-41.
  • 6Dorigo M, Gambardella L M. Ant colony system.. A cooperative learning approach to the traveling salesman problem[J]. IEEE Trans on Evolutionary Computing,1997,1 (1) : 53-56.
  • 7Colorni A, Dorigo M, Maniezzo V. Ant colony system for job-shop scheduling [J]. Belgian J of Operations Research Statistics and Computer Science, 1994,34 (1):39-53.
  • 8Maniezzo V. Exact and approximate nondeterministic tree search procedures for the quadratic assignment problem[J]. Informs J of Computer, 1999, (11) :358-369.
  • 9Bilchev G, Parmee I C. The ant colony metaphor for searching continuous design spaces[J]. Lecture Notesin Computer Science, 1995, 993:25-39.
  • 10Johann Dr6o, Patrick Siarry. A new ant colony algorithm using the heterarchical concept aimed at optimization of multiminima continuous functions[A].Proc of the 3rd Int Workshop on Ant Algorithms ANTS'2002[C]. Brussels, 2002: 216-221.

共引文献65

同被引文献15

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部