期刊文献+

基于相关向量机的小世界神经元网络拓扑估计

Estimation of small-world neuronal network topology based on relevance vector machine
下载PDF
导出
摘要 采用相关向量机从含噪时间序列中估计小世界神经元网络的节点动力学方程和拓扑结构。在具有多项式结构或能以幂级数展开的动力学系统中,将未知方程写成统一多项式形式,原动力学方程的项在统一多项式中是稀疏的,利用稀疏贝叶斯学习估计出稀疏项从而实现动力学方程和拓扑结构的估计。利用该方法对FHN小世界神经元网络进行节点动力学方程和拓扑估计,结果表明,该方法能快速准确地估计节点动力学方程结构和网络拓扑,对动力学方程系数和网络耦合强度有很高的估计精度,而且对噪声有强鲁棒性。 This paper applied relevance vector machine to estimate node dynamical equations and topology of small-world neuronal network from noisy time series.According to the fact that many dynamical equations or its power series expansion had polynomial structure,by constructing a unified polynomial and making the original dynamical equation sparse in the unified polynomial,obtained dynamical equations and network topology obtained while used sparse Bayesian learning to estimate the sparse nonzero terms.FHN small-world neuronal network as a paradigm demonstrated the estimation effect of the dynamical equations and network topology.The results show that the estimating strategy can identify equations structure and network topology accurately and quickly,the error is small in dynamical equations coefficients and couple strength estimation and is robust to noise.
出处 《计算机应用研究》 CSCD 北大核心 2012年第11期4082-4084,4096,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61072012 61172009) 国家自然科学基金青年基金资助项目(60901035)
关键词 小世界网络 相关向量机 动力学方程重建 拓扑估计 神经元模型 small-world networks relevance vector machine(RVM) dynamical equations reconstruction topology estimation neuron model
  • 相关文献

参考文献10

  • 1HUANG De-bin. Synchronization-based estimation of all parameters of chaotic systems from time series [J]. Physical Review E,2004,69 (6) :067201.
  • 2周芳龙,王浩,姚宏亮.基于粒子滤波的非线性系统静态参数估计方法[J].计算机应用研究,2011,28(5):1637-1639. 被引量:4
  • 3YU Dong-chuan, RIGHERO M, KOCAREV L. Estimating topology of networks [ J ]. Physical Review Letters,2006,97 ( 18 ) : 188701.
  • 4GOUESBET G, LETELLIER C. Global vector-field reconstruction by using a multivariate polynomial L2 approximation on nets[ J]. Physical Review E, 1994,49 (6) :4955- 4971.
  • 5LU Jun- an, LV Jin-hu, XIE Jin. Reconstruction of the lorenz and chen systems with noisy observations [ J ]. Computers and Mathematics with Applications, 2003,46 ( 8 - 9 ) : 1427 - 1434.
  • 6BEZRUCHKO B P, SMIRNOV D A. Constructing nonautonomous differential equations from experimental time series[ J]. Physical Review E ,2000,63( 1 ) :016207.
  • 7WANG Wen-xu, YANG Rui, LAI Ying-cheng, et al. Predicting catastrophes in nonlinear dynamical systems by compressive sensing [ J ]. Physical Review Letters,2,011,106 ( 15 ) : 154101.
  • 8WANG Wen-xu, YANG Rui, LAI Ying-cheng, et al. Time-seriesbased prediction of complex oscillator networks via compressive sensing[J]. Europhysics Letters,2011,94(4) :48006.
  • 9TIPPING M E. Sparse Bayesian learning and the relevance vector machine[ J ]. Journal of Machine Learning Research, 2001,1 : 211- 244.
  • 10NEWMAN M E J, WATTS D J. Renormalization group analysis of the small world network model [ J]. Physics Letters A, 1999,263 (4- 6) :341-346.

二级参考文献13

  • 1ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Yrans on Signal Processing,2002,50(2):174-188.
  • 2DOUCET A, JOHANSEN A M. A tutorial on particle filtering and smoothing: fifteen years later[ M ]. [ S. l. ] : Oxford University Press, 2008.
  • 3XU Zheng-guo, JI Yin-dong, ZHOU Dong-hua. Real-time reliability prediction for a dynamic system based on the hidden degradation process identification [ J]. IEEE Trans on Reliability,2008,57( 2 ) : 230 - 242.
  • 4LIU J, WEST M. Combined parameter and state estimation in simulation-based filtering[M]. New York : Springer-Verlag,2001.
  • 5HURZELER M, KUNSCH H R. Approximation and maximizing the likelihood for a general state-space model [ M ]//DOUCET A, De FREITAS N, GORDON N. Sequential Monte Carlo Methods in Practice. New York : Springer,2001.
  • 6HIGUCHI T. Self organizing time series model [M]. New York : Springer-Verlag, 2001:429-444.
  • 7GILKS W R, BERZUINI C. Following a moving target-Monte Carlo inference for dynamic Bayesian models [ J ]. Journal of the Royal Statistical Society: Series B, 2001,63 ( l ) : 127-146.
  • 8ANDRIEU C, DE FREITAS J F G, DOUCET A. Sequential MCMC for Bayesian model selection [C]//Proc of IEEE Workshop Higher Order Statistics. 1999 : 130-134.
  • 9DOUCET A, TADIC V B. Parameter estimation in general state-space models using particle methods[J]. Annals of the Institute of Statistical Mathematics,2003,55(2) :409-422.
  • 10ANDRIEU C, DOUCET A. Online expectation-maximization type al- gorithms for parameter estimation in general state space models [ C ]// Proc of IEEE International Conference on Acoustics, Speech, and Signal Processing. 2003:69-72.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部