期刊文献+

融合DECORATE的异构分类器集成算法 被引量:3

Algorithm of heterogeneous classifiers ensembles based on DECORATE
下载PDF
导出
摘要 在基于Stacking框架下异构分类器集成方式分析的基础上,引入同构分类器集成中改变训练样本以增强成员分类器间差异性的思想,提出融合DECORATE的异构分类器集成算法SDE;在1-层泛化利用DECORATE算法,向1-层训练集增加一定比例的人工数据,使得生成的多个1-层成员分类器间具有差异性。实验表明,该方法在分类精度上要优于传统Stacking方法。 Based on the Stacking framework to construct heterogeneous ensembles,this paper introduced manipulating training samples in the context of creating homogeneous ensembles as the mechanism to encourage diversity.It proposed a new algorithm SDE,which used DECORATE to generate level-1 ensembles by adding proportion of artificial data to level-1 training set so as to inject diversity for member classifiers in level-1.Experiment results indicate that the proposed method achieves better performance than classic Stacking.
出处 《计算机应用研究》 CSCD 北大核心 2012年第11期4134-4136,4147,共4页 Application Research of Computers
基金 广西自然科学基金资助项目(2010GXNSFA013127) 广西教育厅资助项目(201106LX131)
关键词 分类器集成 异构 STACKING DECORATE 差异性 classifier ensembles heterogeneous Stacking DECORATE diversity
  • 相关文献

参考文献13

  • 1DIETTERICH T G. Ensemble methods in machine learning [ C ]// Lecture Notes in Computer Science, vol 1857. Berlin:Springer, 2000: 1-15.
  • 2BROWN G. Ensemble learning[ C]//Proc of Encyclopedia of Machine Learning. Berlin: Springer,2010:312-320.
  • 3李凯,崔丽娟.集成学习算法的差异性及性能比较[J].计算机工程,2008,34(6):35-37. 被引量:22
  • 4BRAN S, WANG W. On diversity and accuracy of homogeneous and heterogeneous ensembles[ J]. International Journal of Hybrid Intelligent System,2007,4 (2) : 103-128.
  • 5HSU K W, SRIVASTAVA J. Diversity in combinations of heterogeneous classifiers[C]//Proc of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Berlin:Springer, 2009:923-932.
  • 6WOLPERT D. Stacked generalization[ J]. Neural Networks,1992,5 (2) :241-260.
  • 7SEEWALD A K. How to make stacking better and faster while also taking care of an unknown weakness [ C ]//Proc of the 19th International Conference on Machine Learning. 2002:554-561.
  • 8HATAMI N, EBRAHIMPOUR R. Combining multiple classifiers: diversify with boosting and combining by stacking [ J ]. International Journal of Computer Science & Network Security,2007,7 (1) : 127-131.
  • 9MENAHEM E, ROKACH L, ELOVICI Y. Troika:an improved stacking schema for classification tasks [ J]. Information Sciences, 2009,179 (24) :4097-4122.
  • 10LEDEZMA A, ALER A, SANCHIS A, et al. GA-stacking: evolutionary stacked generalization [ J ]. Intelligent Data Analysis,2010, 14(1) :89-119.

二级参考文献3

  • 1Liu Chenglin. Classifier Combination Based on Confidence Transformation[J]. Pattern Recognition. 2005, 38(1): 11-28.
  • 2Aksela M, Laaksonen J. Using Diversity of Errors for Selecting Members of a Committee Classifier[J]. Pattern Recognition, 2006, 39(4): 608-623.
  • 3Ian H, Frank W E. Data Mining: Practical Machine Learning Tools and Techniques[M]. 2nd ed, San Francisco: Morgan Kaufmann, 2005.

共引文献21

同被引文献24

  • 1陈振宇,刘金波,李晨,季晓慧,李大鹏,黄运豪,狄方春,高兴宇,徐立中.基于LSTM与XGBoost组合模型的超短期电力负荷预测[J].电网技术,2020,44(2):614-620. 被引量:223
  • 2吴冲,夏晗.基于支持向量机集成的电子商务环境下客户信用评估模型研究[J].中国管理科学,2008,16(S1):362-367. 被引量:18
  • 3苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 4Dietterich T G.Ensemble methods in machine learning[C] //Lecture Notes in Computer Science,vol 1857.Berlin:Springer,2000:1-15.
  • 5Hsu K W,Srivastava J.Diversity in combinations of heterogeneous classifiers[C] //Proceedings of 13th pacific-asia conference on advances in knowledge discovery and data mining.Berlin:Springer,2009:923-932.
  • 6Yin X C,Huang K,Hao H W,et al.Classifier ensemble using a heuristic learning with sparsity and diversity[C] //Neural Information Processing.Springer Berlin/Heidelberg,2012:100-107.
  • 7Schumacher J,Sakic D,Grumpe A,et al.Active Learning of Ensemble Classifiers for Gesture Recognition[J] .Pattern Recognition,2012:498-507.
  • 8Hatami N,Ebrahimpour R.Combining multiple classifiers:diversify with boosting and combining by stacking[J] .International Journal of Computer Science & Network Security,2007,7(1):127-131.
  • 9Menahem E,Rokach L,Elovici Y.Troika:an improved stacking schema for classification tasks[J] .Information Sciences,2009,179(24):4097-4122.
  • 10Seewald A K.How to make stacking better and faster while also taking care of an unknown weakness[C] //Proceedings of the 19th international conference on machine learning,2002:554-561.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部