期刊文献+

一种基于改进型Logistic映射的混沌信号估算跟踪方法

Method of chaotic signals estimation and track based on improved Logistic map
下载PDF
导出
摘要 虽然无先导卡尔曼滤波(UKF)技术在性能上要优于一阶线性化的扩展卡尔曼滤波(EKF)技术,但是对于改进型Logistic混沌映射的扩频通信系统,UKF运算时间长,算法复杂。针对上述缺点以及改进型Logistic映射的泰勒展开式最高项为二阶的特点,提出将二阶EKF运用到接收系统中,该接收系统能精确到泰勒展开式的二阶,达到与UKF相同的性能。相比UKF的复杂算法更加简单,运算速度也更快。仿真实验表明,虽然二阶EKF与UKF的误码率相同,但在运算速度与复杂度方面均优于UKF。 It has been pointed out that chaotic signals could be estimated and tracked by Kalman filter,which solves the problem of chaos synchronization.Unscented Kalman filter(UKF) technique has a better performance than extended Kalman filter(EKF) which is based on the first order linearization.But UKF costs too much time on operation in spread spectrum communication system based on improved Logistic chaotic mapping and its algorithm is complex too.In response to these shortcomings and also because of the improved Logistic mapping's highest item of Taylor expansion is second-order,this paper applied the second-order EKF to receiver.It shows that the receiving system can be accurate to the second order Taylor expansion,which has the same performance as the UKF.Comparing with the UKF,second-order EKF is more simple in algorithm and faster in operation.Simulation results show that second-order EKF is better than UKF in computing speed and complexity,while they have the same BER.
出处 《计算机应用研究》 CSCD 北大核心 2012年第11期4152-4155,4158,共5页 Application Research of Computers
基金 重庆市科委自然科学基金计划资助项目(2007ba2017)
关键词 混沌序列 扩展卡尔曼滤波 无先导卡尔曼滤波 误码率 chaotic sequences extended Kalman filter(EKF) unscented Kalman filter(UKF) bit error rate(BER)
  • 相关文献

参考文献12

  • 1WANG Shi-lian, WANG Xiao-dong. M-DCSK-based chaotic communications in MIMO multipath channels with no channel state information[J]. IEEE Trans on Circuits and Systems-Ⅱ: Express Briefs,2010,57 (12) : 1001-1005.
  • 2RAJU B V S S N, DEERGHA R K. Blind robust multiuser detection in synchronous chaotic modulation systems [ C ]//Proc of Annual IEEE India Conference. 2009:1-4.
  • 3PECORA L, CAROLL T. Synchronization in chaotic systems [J]. Physics Review Letter,1990,64(8) :821-823.
  • 4CHEN Mao-yin. Chaos synchronization in complex networks [ J ]. IEEE Xrans on Circuits and Systems-Ⅰ: Regular Papers, 2008,55 ( 5 ) : 1335-1346.
  • 5陈宏滨,冯久超,胡志辉.一种基于无先导卡尔曼滤波的混沌相移键控通信系统的非相干检测方法[J].电子与信息学报,2008,30(7):1576-1579. 被引量:2
  • 6KOLUMBAN G, KENNEDY M P, CHUA L O. The role of synchronization in digital communications using chaos-part Ⅱ: chaotic modulation and chaotic synchronization[ J]. IEEE Trans on Circuits and Systems-Ⅰ: Fundamental Theory and Applications, 1997, 44(10) :936-927.
  • 7CUOMO K M, OPPENHEIM A V, STROGRATZ S H. Synchronization of Lorenz-based chaotic circuits with application to communication[ J]. IEEE Trans on Circuits and Systems-Ⅱ, 1993,40 (10) :626-633.
  • 8SOBISKI D J, THORP J S. PDMA-1 : chaotic communication via the extended Kalman filter[ J ]. IEEE Trans on Circuits and Systems- Ⅰ,1998,45(2) :194-197.
  • 9JULIER S, UHLMANN J, DURRANT-WHYTE H F. A new method for the nonlinear transformation of mean and covafiance in filter and estimator[ J]. IEEE Trans on Automatic Control,2000,45 (3): 477-482.
  • 10LUCA M B, AZOU S, BUREL G, et al. A complete receiver solution for a chaotic direct sequence spread spectrum communication system [ C]//Proc of IEEE International Symposium on Circuits and Systems. 2005:3813- 3816.

二级参考文献13

  • 1王世元,冯久超.一种对噪声混沌信号的滤波方法[J].电路与系统学报,2004,9(4):58-62. 被引量:4
  • 2Pecora L M and Caroll T L. Synchronization in chaotic systems. Physics Review Letters, 1990, 64(8): 821-824.
  • 3Dedieu H, Kennedy M P, and Hasler M. Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-synchronizing Chua's circuits. IEEE Trans. on Circuits and Systems-part Ⅱ, 1993, 40(10): 634-642.
  • 4Kolumban G, Vizvari G K, and Schwarz W, et al.. Differential chaos shift keying: A robust coding for chaos communication, in Proceedings of International Workshop on Nonlinear Dynamics of Electronic Systems, Seville, Spain, June 27-28, 1996: 87-92.
  • 5Kolumban G, Kis G, and Jako Z, et al.. FM-DCSK: A robust modulation scheme for chaotic communications. IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences, 1998, E81-A(9): 1798-1802.
  • 6Kisel A, Dedieu H, and Schimming T. Maximum likelihood approaches for noncoherent communications with chaotic carriers. IEEE Transactions on Circuits and Systems-part Ⅰ, 2001, 48(5): 533-542.
  • 7Feng J C and Tse C K. On-line adaptive chaotic demodulator based on radial-basis-function neural networks. Physical Review E, 2001, 63(2): 1-10.
  • 8Tse C K, Lau F C M, and Cheong K Y, et al.. Return-map-based approaches for noncoherent detection in chaotic digital communications. IEEE Trans. on Circuits and Systems-part Ⅰ,2002, 49(10): 1495-1499.
  • 9Zhu Z W and Leung H. Combined demodulation with adaptive blind equalization for chaotic modulation communication systems. IEEE Trans. on Circuits and Systems-part Ⅰ, 2002, 49(12): 1811-1820.
  • 10Kolumban G, Kis G, and Lau F C M, et al. Optimal noncoherent FM-DCSK detector: Application of chaotic GML decision rule. in IEEE International Symposium on Circuits and Systems, Vancouver, Canada, May 23-26, 2004, Ⅳ: 597-600.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部