期刊文献+

启发式重构算法在压缩传感中的应用研究 被引量:3

Research on application of hierarchical reconstruction algorithm in compressed sensing
下载PDF
导出
摘要 针对传统算法在处理传感器网络的大规模信号时,运算复杂度显著增大,性能急剧下降的问题,提出了启发式同步自适应迭代阈值重构算法。采用启发式差错控制函数选择代价最少的方向逐行同步收缩逼近最优解,并结合由自适应递减幂指数参数所确定的非线性阈值函数,进一步判断修正重构信号。仿真结果表明,启发式同步自适应迭代阈值重构算法以更少的测量值和迭代次数重构信号,其信噪比提高了60 dB。 In consideration of the issues of the high computation complexity and the weakness performance of traditional algorithm for very large-scale problems in sensor networks,this paper proposed a new method.Hierarchical simultaneous adaptive iterative threshold algorithm allowed reconstructing the optimal sparse signals simultaneously by processing row by row of the compressed signals along the least cost direction.Moreover,with the nonlinearly thresholding function,it was able to fix the reconstruction signals.The extensive experimental results confirm the validity and high performance of the HSAIT algorithm with fewer numbers of measures and iterative,and the signal to noise ratio improves to 60dB.
出处 《计算机应用研究》 CSCD 北大核心 2012年第11期4232-4234,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60872064)
关键词 传感器网络 分布式压缩传感 迭代阈值 非线性函数 重构 sensor networks distributed compressive sensing iterative threshold nonlinearly function reconstruction
  • 相关文献

参考文献12

  • 1IAN FA. A survey on wireless multimedia sensor networks [ J ]. Computer Networks,2007,51 (4) :921-960.
  • 2BERG E, FRIEDLANDER M P. Theoretical and empirical results for recovery from multiple measurements [ J]. IEEE Trans on Information Theory,2010,56(5) :2516-2527.
  • 3BARON D,WAKIN M B, DUARTE M. et al. Distributed compressive sensing[ EB/OL]. ( 2005-11-27 ) [ 2009-01-22 ]. http ://arxiv. org/ PS_cache/arxiv/pdtY0901/0901. 3403v1. pdf.
  • 4TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[ J]. IEEE Trans on Information Thoory ,2007,53(12) :4655-4666.
  • 5顾彬,杨震,胡海峰.基于压缩感知信道能量观测的协作频谱感知算法[J].电子与信息学报,2012,34(1):14-19. 被引量:16
  • 6NEEDELL D,TROPP J A. CoSaMP:iterative signal recovery from incomplete and inaccurate samples [ J ]. Applied and Computational Harmonic Analysis,2009,26(3):301-321.
  • 7DONOHO D L. Compressed sensing[ J]. IEEE Trans on Information Theory, 2006,52 ( 4 ) : 1289-1306.
  • 8TANG Gong-guo,NEHORAI A. Performance analysis for sparse support recovery [ J ]. IEEE Trans on Information Theory, 2010,56 (3) :1383-1399.
  • 9PHAN A H, CICHOCKI A, MATSUOKA K, et al. Novel hierarchical ALS algorithm for nonnegative tensor factorization [ C ]//Proc of International Conference on Acoustics, Speech and Signal Processing. 2011 : 1984-1987.
  • 10王蓟翔,张扬.基于矩阵分解的压缩感知算法研究[J].通信技术,2011,44(6):138-140. 被引量:10

二级参考文献15

  • 1Haykin S. Cognitive radio: brain-empowered wireless communications [J]. IEEE Journal on Selected Area in Communication, 2005, 23(2): 201-220.
  • 2Candes E, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 4Tian Z and Giannakis G B. Compressed sensing for wideband cognitive radios [C]. International Conference on Acoustics, Speech, and Signal Processing, Honolulu, HI, USA, Apr. 15-20, 2007: 1357-1360.
  • 5Polo Y L, Wang Y, Pandharipande A, et al.. Compressive wide-band spectrum sensing [C]. International Conference on Acoustics, Speech, and Signal Processing, San Diego, CA, USA. Feb. 8-13. 2009: 178-183.
  • 6Havary-Nassab V, Hassan S, and Valaee S. Compressive detection for wide-band spectrum sensing [C]. International Conference on Acoustics, Speech, and Signal Processing, Dallas, TX, USA, Mar. 14-19, 2010: 3094-3097.
  • 7Tropp J A and Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
  • 8Needell D and Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 310-316.
  • 9Dai W and Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction [J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249.
  • 10Needell D and Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples [J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301-321.

共引文献24

同被引文献28

  • 1Baron D, Duarte M F, Sarvotham S, et al.An information theoretic approach to distributed compressed sensing[C]// Allerton Conference on Communication, Control, and Com- puting, Allerton, 2005 : 1-12.
  • 2Cotter S F,Rao B D,Engan K,et al.Sparse solutions to linear inverse problems with multiple measurement vec-tors[J].IEEE Transactions on Signal Processing, 2005,53 (7) : 2477-2488.
  • 3Ling Qing, Tian Zhi.Decentralized support detection of multiple measurement vectors with joint sparsity[C]//IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), Prague, 2011 : 2996-2999.
  • 4Zeng Fanzi, Tian Zhi, Li Chen.Distributed compressive wideband spectrum sensing in cooperative multi-hop cog- nitive networks[C]//IEEE International Conference on Com- munications (ICC), Cape Town, 2010 : 1-5.
  • 5Duarte M F, Baron D, Wakin M B.Distributed com- pressed sensing[C]//43rd Allerton Conferences on Com- munication,Control,and Computing,2005: 1-50.
  • 6Wang Ying, Pandharipande A, Leus G.Distributed compres- sive wide-band spectrum sensing[C]//Information Theory and Applications Workshop, San Diego, CA, 2009 : 178-183.
  • 7Liang Junhua, Liu yang, Xu Youyun.Joint compressive sensing in wideband cognitive networks[C]//Wireless Com- munications and Networking Conference(WCNC).Sydney, Australia: IEEE Press, 2010 : 1-5.
  • 8Duarte M F,Sarvotham S,Baron D,et al.Distributed com- pressed sensing of jointly sparse signals[C]//39th Asilomar Conference on Signals, Systems and Computers,2005 : 1-5.
  • 9Do T T,Gan Lu,Nguyen N.Sparsity adaptive matching pursuit algorithm for practical[C]//42nd Asilomar Confer- ence on Signals, Systems and Computers,Pacific Grove, 2008 : 581-587.
  • 10BONGARD J,LIPSON H. Automated reverse engineering ofnonlinear dynamical systems [J]. Proc natl acad sci,2007,104(24):9943-9948.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部