期刊文献+

公共环境下的混合型音乐推荐系统的关键技术研究 被引量:4

Hybrid music recommender system in public environment
下载PDF
导出
摘要 随着计算机网络和多媒体技术的迅速普及,数字音乐消费已经成为人们日常生活中的常见活动,音乐推荐系统也因此成为了推荐系统和电子商务领域的一大研究热点。在对现有音乐推荐系统调研的基础上,重点研究公共环境下的混合型音乐推荐系统的设计和实现;将音乐特征和语境信息相结合,提出了一种新颖的混合型音乐推荐算法。为保证实际应用环境中音乐消费行为的灵活性,系统实现了投票和DJ两种推荐模式。该系统在实验室及实地测试中均取得了较高的用户满意度。 With the rapid development of the Internet and multimedia technologies,digital music consumptions have become daily activities.Music recommender systems(MRS) have thus become one of the key research issues in the fields of recommender systems and E-commerce.Based on a thorough investigation of existing MRSs,this research explored hybrid MRS in public environment.Based on a combination of musical features and contextual information,this paper presented a hybrid recommendation algorithm.And it presented voted and DJ modes to ensure flexibility in a practical scenario.Satisfactory results were achieved in the laboratory test and field study.
作者 陈雅茜
出处 《计算机应用研究》 CSCD 北大核心 2012年第11期4250-4253,共4页 Application Research of Computers
基金 国家教育部留学回国人员科研启动基金资助项目 西南民族大学中央高校基本科研业务费专项资金资助项目(11NZYQN25) 2012年国家外国专家局资助项目(2012-45)
关键词 音乐推荐系统 混合型推荐系统 推荐系统 music recommender system hybrid recommender system recommender system
  • 相关文献

参考文献22

  • 1CUNNINGHAM S J, REEVES N, BRITLAND M. An ethnographic study of music information seeking : implications for the design of a music digital library [ C ]//Proc of the 3rd ACM/IEEE-CS Joint Conference on Digital Libraries. Washington DC : IEEE Computer Society, 2003 : 5-16,.
  • 2TZANETAKIS G, COOK P. Musical genre classification of audio signals[J]. IEEE Trans on Speech and Audio Processing,2002, 10(5) :293-302.
  • 3McENNIS D, McKAY C, FUJINAGA I, et al. jAudio: a feature extraction library[ C ]//Proc of International Society for Music Information Retrieval Conference. 2005:600- 603.
  • 4POHLE T, PAMPALK E, WIDMER G. Generating similarity-based playlists using traveling salesman algorithms[ C ]//Proc of the 8th International Conference on Digital Audio Effects. 2005:220-225.
  • 5AUCOUTURIER J J, PACHET F. Music similarity measures: what' s the use? [ C ]//Proc of International Society for Music Information Retrieval Conference. 2002.
  • 6YAPRIADY B, UITDENBOGERD A L. Combining demographic data with collaborative filtering for automatic music recommendation [ C ]// Proc of the 9th International Conference on Knovdedge-based Intethgent Information and Engineering Systems. 2005:201-207.
  • 7PAMPALK E, POHLE T, WIDMER G. Dynamic playlist generation based on skipping behavior [ C ]//Proc of International Society for Music Information Retrieval Conference. 2005:634-637.
  • 8PAUWS S, EGGEN B. PATS: realization and user evaluation of an automatic p[ayIist generator[ C ]//Proc of the 3rd International Comference on Music Information Retrieval. 2002.
  • 9HANSEN D L, GOLBECK J. Mixing it up, recommending collections of items [ C ]//Proc of SIGCHI Conference on Human Factors in Computing Systems. New York : ACM Press ,2009 : 1217-1226.
  • 10KAIJI K, HIRATA K, NAGAO K. A music recommendation system based on annotations about listeners'preferences and situations [ C ]// Proc of the 1st International Conference on Automated Production of Cross Media Content for Multi-Channel Distribution. 2005:231-234.

同被引文献77

  • 1Campbel M E, Clune Iii J E, Hicken W T, et al. MusicRecommendation System and Method: USA, WO2005038666 A1[P]. 2004-08-13.
  • 2Pachet F. Knowledge Management and Musical Metadata[A]//Schwartz D. Encyclopedia of Knowledge Management[M]. Idea Group, 2005.
  • 3Shardanand U, Maes P. Social Information Filtering:Algorithms for Automating “Word of Mouth”[C]. In:Proceedings of the SIGCHI Conference on Human Factors inComputing Systems. New York, USA: ACM, 1995:210-217.
  • 4Lee S. A Generic Graph-Based Multidimensional Recommen- dation Framework and Its Implementations[C]. In: Proceedings of the 21 st International Conference Companion on World Wide Web. ACM, 2012: 161-166.
  • 5Yoshii K, Goto M, Komatani K, et al. Hybrid Collaborativeand Content-Based Music Recommendation UsingProbabilistic Model with Latent User Preferences [C]. In:Proceedings of the International Conference on MusicInformation Retrieval. 2006.
  • 6Liu Z, Wang Y,Chen T. Audio Feature Extraction andAnalysis for Scene Segmentation and Classification [J].Journal of VLSI Signal Processing Systems for Signal, Imageand Video Technology, 1998, 20(1-2): 61-79.
  • 7Li S 2. Content-Based Audio Classification and RetrievalUsing the Nearest Feature Line Method [J]. IEEETransactions on Speech and Audio Processing, 2000, 8(5):619-625.
  • 8Gouyon F, Pachet F, Delerue O. On the Use of Zero-CrossingRate for an Application of Classification of PercussiveSounds[C]. In: Proceedings of the COST-G6 Conference onDigital Audio Effects(DAFX-OO), Verona, Italy. 2000.
  • 9Cano P, Koppenberger M, Wack N. An Industrial-StrengthContent-Based Music Recommendation System [C]. In:Proceedings of the 28th Annual International ACM SIGIRConference on Research and Development in InformationRetrieval. ACM, 2005:673.
  • 10Pohle T,Pampalk E, Widmer G. Generating Similarity-BasedPlaylists Using Traveling Salesman Algorithms [C]. In:Proceedings of the 8th International Conference on DigitalAudio Effects (DAFx-05). 2005: 220-225.

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部