期刊文献+

基于量子行为进化算法的聚焦爬虫搜索策略 被引量:2

Search strategy of focused crawler based on Bloch quantum evolutionary algorithm
下载PDF
导出
摘要 针对单一价值评价的聚焦爬虫搜索策略存在主题漂移等问题进行了研究,充分利用量子进化算法所具有的智能性,提出一种新的聚焦爬虫爬行算法。该算法充分结合网页在互联网上的分布特点,利用立即价值和未来价值两类评价标准的优势,根据聚焦爬虫实际运行过程中的搜索情况,在线调整这两种标准在综合价值中的比重。实验仿真结果表明,相对于单一价值的搜索策略,量子进化算法获得较高的页面查全率和信息查准率,能较好地解决现存问题,具有一定的自适应性。 According to the single value evaluation focused crawler search strategy has the topic drift problem, and make full use of the intelligence of the Bloch quantum evolutionary algorithm( BQEA ) , this paper proposed a new algorithm of focused crawler. The algorithm integrated Web distribution on the Internet fully, used the advantages of two types of evaluation criteria of the immediate value and the future value adjusted to the proportion of two standards online in the integrated Value, according to focused crawler search on the actual process. The experimental result by simulation show that, compared with the search strategy of a single value, the BQEA obtains a higher recall rate, and precision rate and can solve the existing problems with certain self-adaptive,
出处 《计算机应用研究》 CSCD 北大核心 2012年第11期4280-4283,共4页 Application Research of Computers
基金 中国博士后科学基金资助项目(20090460864) 黑龙江省教育厅科学技术研究资助项目(11551015)
关键词 聚焦爬虫 主题相关度 立即价值 未来价值 量子进化算法 focused crawler topic relevancy immediate value future value Bloch quantum evolutionary algorithm
  • 相关文献

参考文献6

二级参考文献26

  • 1欧阳柳波,李学勇,李国徽,王鑫.专业搜索引擎搜索策略综述[J].计算机工程,2004,30(13):32-33. 被引量:34
  • 2唐志,王成良.遗传算法在主题Web信息采集中的应用研究[J].计算机科学,2006,33(7):71-74. 被引量:5
  • 3Hersovici M, Heydon A, Mitzemacher M. The Shark search Algorithm An Application:Tailored Web Site Mapping[C]. World Wide Web Conference, Toronto, Canada, 1998.
  • 4Srinivasan P, Pant G, Menczer F, et al. Target See-king Crawlers and Their Topical Performance[C]. SIGIR Conference on Research and Development in Information Retrieval, Tampere, Finland,2002.
  • 5Sutton R S, Barto A G. Reinforcement Learning: an Introduction[M]. MA: MIT Press, 1998.
  • 6Li Yuanxiang, Zou Xiufen. Solving Global Optimal Problems by Using a Dynamical Evolutionary Algorithm[C]. The 5th International Conference on Algorithms and Architectures for Parallel Processing, Beijing, China, 2002.
  • 7Zheng Binbin, Li Yuanxiang, Shen Xianjun. A New Dynamic Particle Swarm Optimizer[C]. The 6th International Conference Simulated Evolution and Learning, Hefei, China, 2006.
  • 8Rennie J, Mccallum A. Using Reinforcement Learning to Spider the Web Efficiently[C]. The In ternational Conference on Machine Learnin, Bled, Slovenia, 1999.
  • 9Imperial College Department of Computing.免费在线计算字典[OL].http://www.foldoc.org/.2003.
  • 10Menczer F, Pant G, Srinivasan P. Topic Web Crawlers: Evaluation Adaptive Algorithms [ M]. New York: ACM Press, 2003.

共引文献18

同被引文献28

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部