期刊文献+

铁路隧道火灾烟气温度场分布规律的试验研究 被引量:11

Experimental study on the temperature distribution of fire-induced smoke in railway tunnel fires
下载PDF
导出
摘要 以我国某铁路水下盾构隧道为背景,针对不同纵向通风风速、火灾规模等因素进行了18组缩尺寸火灾模型试验,对火灾时隧道内烟气温度场的纵向变化规律、高温烟气的蔓延规律进行研究,获得了不同工况下拱顶下方烟气温度纵向分布规律、火区内和火区下游烟气最高温度分布规律,以及火灾蔓延范围等。并根据火区内烟气最高温度的试验数据,得到关于烟气最高温度与纵向通风风速及火灾规模的理论公式。拟合结果表明,该理论公式与试验数据能够较好地吻合,相关性为0.92左右。 The present paper intends to introduce our experimental study on the temperature distribution of fire-induced smoke in railway tunnel fires. In order to provide appropriate fire rescue measures and diminish the damage caused by the fire, we have carried out eighteen tests in a reduced-scale model tunnel in hoping to trace the distribution of smoke temperature along the tunnel ceiling and the high-temperature smoke dispersing regularity in the tunnel. On the basis of studying the first extra-long underwater railway tunnel in China, we have traced the longitudinal ventilation velocity with the variation of the fire size. From the tests we have found the smoke temperature below the tunnel ceiling in diverse situations, the maximum smoke temperatures below the ceiling at the near-fire position and the downstream situation, in addition to the distribution range of given smoke temperatures under the ceiling. The results of our study show that the decreases of smoke temperature along the tunnel ceiling at different longitudinal ventilation velocities and fire sizes can fall into an exponential function. The smoke temperatures for the upstream back layering prove to be more sensitive to the longitudinal ventilation. At the lower wind velocities, the smoke temperature below the ceiling for the upstream back layering tends to be higher at the near fire positions while decreasing faster when travelling away from the fire than that of the downstream fire current. However, when the longitudinal ventilation velocity is not lower than the critical one, the smoke temperature won’t be rising. The maximum smoke temperature below the tunnel ceiling should be lower with the higher longitudinal ventilation velocity, but higher with larger fire size. In addition, we have obtained an exponential expression about the relationship among the maximum smoke temperature, longitudinal ventilation velocities and the fire sizes based on the experimental data measured. And the predictions of the formula prove to be in concord with the experimental data for all the tests with a correlation coefficient of 0.92.
出处 《安全与环境学报》 CAS CSCD 北大核心 2012年第5期191-196,共6页 Journal of Safety and Environment
基金 铁道部科技研究开发计划项目(2006G007-A-1)
关键词 安全工程 缩尺寸火灾模型试验 通风风速 火灾规模 温度场分布 safety engineering reduced-scale fire model tests ven-tilation velocities fire sizes smoke temperature distri-bution
  • 相关文献

参考文献15

  • 1YANG Gaoshang(杨高尚), PENG Limin(彭立敏), AN Yonglin(安永林), et al. Study on spacing between vehicles and passages of road tunnel[J]. 中南大学学报: 自然科学版, 2010, 10(6): 145-149.
  • 2杨高尚,彭立敏,张进华,安永林.Simulation of people's evacuation in tunnel fire[J].Journal of Central South University of Technology,2006,13(3):307-312. 被引量:5
  • 3PURSER D A, BENSILUM M. Quantification of behaviour for engineering design standards and escape time calculations[J]. Safety Science, 2001, 38(2): 157-182.
  • 4VAUQUELIN O, TELLE D. Definition and experimental evaluation of the smoke "confinement velocity" in tunnel fires[J]. Fire Safety Journal, 2005, 40(4): 320-330.
  • 5KURIOKA H, OKA Y, SATOH H, et al. Fire properties in near field of square fire source with longitudinal ventilation in tunnels[J]. Fire Safety Journal, 2003, 38(4): 319-340.
  • 6JAE S R, SEUNG S Y, HONG S R. An experimental study on the effect of ventilation velocity on burning rate in tunnel fires-heptane pool fire case[J]. Building and Environment, 2008, 43(7): 1225-1231.
  • 7OKA Y, SUGAWA O, IMAMURA T. Correlation of temperature rise and velocity along an inclined fire plume axis in crosswinds[J]. Fire Safety Journal, 2008, 43(6): 391-400.
  • 8WU Y, BAKAR M Z A. Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of the critical velocity[J]. Fire Safety Journal, 2000, 35(4): 363-390.
  • 9VAUQUELIN O. Parametrical study of the back flow occurrence in case of a buoyant release into a rectangular channel[J]. Experimental Thermal and Fluid Science, 2005, 29(6): 725-731.
  • 10KUNSCH J P. Simple model for control of fire gases in a ventilated tunnel[J]. Fire Safety Journal, 2002, 37(1): 67-81.

二级参考文献7

共引文献37

同被引文献76

引证文献11

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部