期刊文献+

MQ函数在偏微分方程中的应用 被引量:1

Application of the Multiquadric Method for Numerical Solution of Partial Differential Equation
下载PDF
导出
摘要 讨论了用径向基multiquadric(MQ)函数φ(r)=(r2+c2)^(1/2)作为基函数解一类偏微分方程,给出方法步骤,并通过一个数值算例,说明这个方法是可行的.针对数值算例,比较了在相同步长时,用径向基函数在不同的形状参数时绝对误差的差异,说明微分方程数值解的精确程度与径向基函数形状参数的取值密切相关,得出节点越密时,数值解的精度不一定越高.同时也论证了在插值过程中所得到的矩阵方程解的存在唯一性. An algorithm for partial differential equation based onthe multiquadric (MQ) function φ(r)=√r2+c2 as basis function approximation scheme is presented. A fairly exphcit scheme is used to approximate the solution. One model problem of the algorithm is given. The comparison is made with the exact solutions of the problem by different shape parameter and different nodal distance. Numerical results show that the method offers a very high accuracy in computation of the partial differential equation. It is debated that numerical results may not be better when nodal distance is smaller. It is proved that the matrix equation we obtain has a solution.
作者 张颖超
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2012年第5期15-19,共5页 Journal of Natural Science of Hunan Normal University
基金 广西教育厅科研项目(201106LX076)
关键词 MQ函数 数值解 偏微分方程 MQ function numerical solution differential equation
  • 相关文献

参考文献16

  • 1胡建伟,汤怀民.微分方程数值方法[M].天津:科学出版社,1999.
  • 2张池平.数值方法[M].北京:科学出版社,2006.
  • 3KHATFAK A J, /_SLAM S U. A comparative study of numerical solutions of a class of KdV equation[JJ. Appl Math Comput, 2008,199 ( 2 ) :425-434.
  • 4LSLAM S U, HAQ S, UDDIN M. A meshfree interpolation method for the numerical solution of the coupled nonlinear partial differential equations [ J ]. Eng Anal Bound Elem, 2009,33 ( 3 ) :399-409.
  • 5CHEN R, WU Z M. Solving partial differential equation by using multiquadric quasi-interpolation [ J]. Appl Math Comput, 2007,186(2) :1502-1510.
  • 6KHATFAK A J, TIRMIZI S I A, I.,SAM S U. Application of meshfree collocation method to a class of nonlinear partial differen- tial equations [ J ]. Eng Anal Bound Elem, 2009,33 ( 5 ) :661-667.
  • 7秦伶俐,黄文彬,周喆.径向基函数在无单元方法中的应用[J].中国农业大学学报,2004,9(6):80-84. 被引量:9
  • 8钱向东.基于紧支径向基函数的配点型无网格法[J].河海大学学报(自然科学版),2001,29(1):96-98. 被引量:10
  • 9HARDY R L. Theory and applications of the multiquadric biharmonic method:20 years of discovery 1968-1988 [ J]. Comput Math Appl, 1990,19 ( 8/9 ) : 163-208.
  • 10KANSA E J. Multiquadries: a scarrered data approximation scheme with application to computational fluid dynamics: surface approximations and partial derivative estimates [ J ]. Comput Math Applic, 1990,19 (8/9) : 127-154.

二级参考文献34

  • 1秦伶俐,黄文彬,周喆.径向基函数在无单元方法中的应用[J].中国农业大学学报,2004,9(6):80-84. 被引量:9
  • 2张元林.积分变换[M].南京:高教出版社,2007.
  • 3BEATSON R K, POWELL M J D. Univariate multiquadric approximation: quasi-interpolation to scattered data[J]. Constr Approx, 1992,3 (8) :275-288.
  • 4胡建伟,汤怀民.微分方程数值方法[M].天津:科学出版社,1999.
  • 5张池平.数值方法[M].北京:科学出版社,2006.
  • 6MADYCH W R. Miscellaneous error bounds for multiquadric and related interpolators I J]. Comput Math Applic, 1992, 24 (12) : 121-138.
  • 7KANSA E J. Muhiquadrics: a scarrered data approximation scheme with application to computational fluid dynamics: surface approximations and partial derivative estimates [ ] ]. Comput Math Applic, 1990,19 (8/9) : 127-154.
  • 8KANSA E J. Muhiquadrics : a scarrered data approximation scheme with application to computational fluid dynamics : parabolic, and elliptic partial differential equations[ J ]. Comput Math Applic, 1990, 19 (8/9) : 146-161.
  • 9.MADYCH W R, NELSON S A. Miscellaneous error bottds for multiquadic and related inter polators[ J ]. Comput Math Appl, 1992, 24(12) :121-138.
  • 10MADYCH W R, NELSON S A, NELSON. Multivariate interpolation and conditionally positive definite functions [ J ]. Math Comput, 1990, 54(189) : 211-230.

共引文献17

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部