期刊文献+

一类图在小亏格曲面上的嵌入 被引量:4

Embedding on Surfaces with Small Genus of One Type of Graph
下载PDF
导出
摘要 利用嵌入联树模型和组合计数的相关方法,获得了由鹅卵石路图添加一条边所得到的一类图Gn在球面及射影平面上的嵌入个数,它们分别为2n-1(n≥2)和(3n-3)2n-1(n≥2). By the model of joint tree and combinatorial method, the number of embedding on the sphere and projective plane of graph Gn, which is obtained by adding an edge to the cobblestone path, is obtained. They are 2n-1(n≥2) and (3n-3)2n-1(n≥2), respectirely.
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2012年第5期24-29,共6页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(10771062)
关键词 曲面 亏格 嵌入 联树 surface genus embedding joint tree
  • 相关文献

参考文献5

二级参考文献31

  • 1李立峰,刘彦佩.一类三正则图的嵌入亏格分布[J].北京交通大学学报,2004,28(6):39-42. 被引量:6
  • 2Yi Chao CHEN,Yah Pei LIU,Tao WANG.The Total Embedding Distributions of Cacti and Necklaces[J].Acta Mathematica Sinica,English Series,2006,22(5):1583-1590. 被引量:10
  • 3Jonathan L G, David P R, Thomas W T. Genus distributions for bouquets of circles. J Combinatorial Theory B, 1989, 47:292-306
  • 4Merrick L F, Jonathan L G, Richard S. Denus distributions for two classes of graphs. J Combinatorial Theory B, 1989, 46:22-36
  • 5Liu Y P. The maximum orientable genus of a graph. Scientia Sinica, Special Issue on Math Ⅱ, 1979:41-55
  • 6杨艳,刘彦佩.两类四正则图的完全亏格分布[J].数学学报(中文版),2007,50(5):1191-1200. 被引量:7
  • 7Gross, J., Robbins, D. P., Tucker, T. W.: Genus distributions for bouquets of circles. J. Combin Theory Ser., B47, 292-306 (1989)
  • 8Gross, J., Klein, E., Rieper, R.: On the average genus of a graph. Graphs Combin., 9, 153-162 (1993)
  • 9Furst. M. L., Gross, J., Statman, R.: Genus distributions for two classes of graphs. J. Combin. Theory Ser. B, 46, 22-36 (1989)
  • 10Tesar, E. H.: Genus distribution of Ringel ladders. Discrete Math., 216, 235-252 (2000)

共引文献15

同被引文献18

  • 1张忠辅,陈祥恩,李敬文,姚兵,吕新忠,王建方.关于图的邻点可区别全染色[J].中国科学(A辑),2004,34(5):574-583. 被引量:192
  • 2朱子龙,刘彦佩.两类图的亏格分布[J].沈阳师范大学学报(自然科学版),2006,24(1):1-5. 被引量:5
  • 3Yi Chao CHEN,Yah Pei LIU,Tao WANG.The Total Embedding Distributions of Cacti and Necklaces[J].Acta Mathematica Sinica,English Series,2006,22(5):1583-1590. 被引量:10
  • 4杨艳,刘彦佩.两类四正则图的完全亏格分布[J].数学学报(中文版),2007,50(5):1191-1200. 被引量:7
  • 5吴康,薛展充.关于圈图C_n的连2距k着色计数[J].华南师范大学学报(自然科学版),2007,39(2):7-10. 被引量:5
  • 6Wang W F,Wang Y Q. Adjacent vertex distinguishing to-tal coloring of graphs with lower average degree[J].Tai-wanese Journal of Mathematics,2008,(4):979-990.
  • 7Wang Y Q,Wang W F. Adjacent vertex distinguishing to-tal colorings of outerplanar graphs[J].Journal of Combi-natorial Optimization,2010,(2):123-133.
  • 8Hulgan J. Concise proofs for adjacent vetex-distinguishing total colorings[J].{H}DISCRETE MATHEMATICS,2009,(8):2548-2550.
  • 9Wang H Y. On the adjacent vertex-distinguishing total chromatic numbers of the graphs with Δ(G) =3[J].{H}JOURNAL OF COMBINATORIAL OPTIMIZATION,2007,(1):87-109.
  • 10Bondy J A,Murty U S R. Graph theory with applications[M].London,Basingstoke,New York:The MaCmillan Press ltd,1976.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部