期刊文献+

基于广义量词理论的亚氏三段论 被引量:11

Research on Aristotelian Syllogisms Based on Generalized Quantifier Theory
下载PDF
导出
摘要 揭示了如何从广义量词理论的角度来理解三段论推理。有效的亚氏三段论可以通过作为广义量词特例的亚氏量词的语义定义加以证明。从亚氏量词的语义性质,比如单调性、对称性可以说明亚氏三段论的有效性。亚氏三段论的可化归性反映了亚氏量词与其三种否定量词的语义性质(比如单调性)之间的可转换性。 This paper aims to show how our understanding of syllogistic reasoning may benefit from research on generalized quantifier theory. Valid Aristotelian syllogisms can be proved by semantic definition of Aristotelian quantifiers which are instances of generalized quantifiers, and they can be illustrated from properties of Aristotelian quantifiers, such as montonicity and symmetry. Reducibility be- tween/among syllogisms reflects to transformability between/among the semantic properties (such as monotonicity) of Aristotelian quantifiers and that of their three types of negation. It is hoped that this study will make contributions to the development of generalized quantifier theory, and will inject new vitality for knowledge representation and reasoning in computer science.
机构地区 厦门大学哲学系
出处 《重庆理工大学学报(社会科学)》 CAS 2012年第10期7-11,共5页 Journal of Chongqing University of Technology(Social Science)
基金 教育部人文社科研究规划项目"面向自然语言信息处理的广义量词理论研究"(12YJA72040001)
关键词 亚氏三段论 广义量词理论 广义量词 单调性 对称性 Aristotelian syllogisms generalized quantifier theory generalized quantifiers monotoncity symmetry
  • 相关文献

参考文献8

  • 1张晓君.广义量词的相关性质研究[J].逻辑学研究,2010,3(3):67-79. 被引量:13
  • 2张晓君,郝一江.广义量词的单调性与数字三角形[J].重庆理工大学学报(社会科学),2010,24(3):18-24. 被引量:9
  • 3Peters S,Westerstahl D. Quantifiers in Language and Logic [ M]. Oxford :Claredon Press ,2006.
  • 4Westerstahl D. Generalized Quantifiers [EB/OL]. [2012- 05 - 28 ]. Stanford Encyclopedia of Philosophy, http ://pla- to. stanford, edu/entries/generalized-quantifiers/2011.
  • 5Westerstahal D. Quantifiers in Formal and Natural Langua- ges [ C]//Gabbay D M,Guenthner F. Handbook of Philo- sophical Logic. 2nd ed,2007.
  • 6Barwise J,Etchemendy J. Language,Proof and Logic [ M]. [ S. l. ] : CSLI Publications,2003:225 - 387.
  • 7Hella L. Partially Ordered Connectives and Monadic Mono- tone Strict NP [ J ]. Journal of Logic, Language and Infor- mation,2008 ( 17 ) :323 - 344.
  • 8张晓君,郝一江.广义量词的单调性及其检测方法[c]//中国分析哲学2009.杭州:浙江大学出版社,2010:101-113.

二级参考文献8

  • 1J. Kontinen, Zero-One Law and Rational Quantigiers, staff, science, uva. nl/- katrenko/stus06/images/kontinen. pdf, pp. 1-12.
  • 2L.T.F. Gamut, Intensional Logic and Logical Grammar, University of Chicago Press, 1991, pp. 222-245.
  • 3S. Peters & D. Westerstahl, Quantifiers in language and logic, Claredon Press Oxford, 2006, p. 96 ; p. 160; pp. 163-185; p. 176; p. 176; p. 177.
  • 4M. Kanazawa, Dynamic Generalized Quantifiers and Monotonicity, Stanford University, http://www, inc. uva. nl/Publications/dgq, pdf, 1993, pp. 1-37.
  • 5K. Jaszczlot, Quantified Expressions, University of Cambridge, http://www, mml. cam. ac. uk/ling/courses/ ugrad/p_5, html, 2007/2008, pp. i-vi.
  • 6P. Saint-Dizier, Default Logic, Natural Language and Generalized Quantifiers, 1RISA-INRIA, http ://www. aclweb, org/antholgy-new/c/c88/c88-2117, pdf, 1988, pp. 555-561.
  • 7E. Ruys & Y. Winter, "Background on Generalized Quantifier Theory", 3 Oct. 2008 http ://www. cs. tech- nion. ac. il/ - winter/course/synsem, html, 1997, pp. 1-11.
  • 8R. Zuber. Symmetric and contrapositional quantifiers[J] 2007,Journal of Logic, Language and Information(1):1~13

共引文献14

同被引文献57

  • 1王振华,张大群,张先刚.马丁对语篇语义的研究[J].当代外语研究,2010(10):43-49. 被引量:15
  • 2蔡曙山.一个与卢卡西维兹不同的亚里士多德三段论形式系统[J].哲学研究,1988(4):33-41. 被引量:16
  • 3林胜强,张晓君.广义量词的推理模式研究[J].湖南科技大学学报(社会科学版),2014,17(6):29-33. 被引量:8
  • 4张晓君,郝一江.广义量词的单调性与数字三角形[J].重庆理工大学学报:社会科学,2010(3):18-24.
  • 5A. Mostowski, "On a Generalization of Quantifiers", Fu nd. Math. , 1957 (44), pp. 12--36.
  • 6P. LinstrOm, "First-order predicate logic with generalized quantifiers", Theoria, 1966 (32), pp. 186--195.
  • 7J. Barwise and R. Cooper, "Generalized Quantifiers and Nat- ural Language", Linguistics and Philosophy, 1981, 4 (2), pp. 159--219.
  • 8E. L. Keenan and D. Westerstfihl, "Generalized quantifiers in Linguistics and Logic", in J. van Eenthem and A. ter Meulen (eds.), Handbook of Logic and Language, Am- sterdam: Elsevier, 1997, pp. 837-893.
  • 9S. Peters & D. Westerstahl, Quantifiers in Languages and Logic, Claredon Press, 2006.
  • 10J. Szymanik, Quantifiers in TIME and SPACE: Computa- tional Complexity of Generalized Quantifiers in Natural I.an guage, Dissertation, University of Amsterdam, 2009.

引证文献11

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部