期刊文献+

基于快速层次交替最小二乘非负张量Tucker分解的干涉高光谱图像光谱信息压缩方法 被引量:5

Compression of Interference Hyperspectral Image Based on FHALS-NTD
下载PDF
导出
摘要 提出一种基于快速层次交替最小二乘非负张量Tucker分解的高光谱图像光谱信息压缩算法。首先,将干涉高光谱图像光程差方向的三维信息采用三维光程差方向提升小波变换(3DOPT-LDWT)进行分解,将三维小波子带系数看作三阶非负张量,采用快速层次交替最小二乘非负张量Tucker分解(FHALS-NTD)算法对进行分解,得到核心张量和模式矩阵。对每个模式矩阵进行量化,对核心张量采用比特平面重要系数编码算法进行编码,得出最终的压缩码流。结果表明,此压缩算法可以稳定可靠地工作。与传统压缩算法比较,平均信噪比提高了1.23dB。有效的提高了干涉高光谱图像压缩性能。 A hyperspectral interference image compression algorithm based on fast hierarchical alternating least squares nonnegative tensor Tucker decomposition(FHALS-NTD) is proposed.Firstly,the interference hyperspectral image is decomposed by 3-D OPD lifting-based discrete wavelet transform(3D OPT-LDWT) in the OPD direction.Then,the 3D DWT sub-bands decomposed are used as a three order nonnegative tensor,which is decomposed by the proposed FHALS-NTD algorithm to obtain 8 core tensors and 24 unknown component matrices.Finally,to obtain the final compressed bit-stream,each unknown component matrices element is quantized,and each core tensor is encoded by the proposed bit-plane coding of significant coefficients.The experimental results showed that the proposed compression algorithm could be used for reliable and stable work and has good compressive property.In the compression ratio range from 32∶1 to 4∶1,the average peak signal to noise ratio of proposed compression algorithm is higher than 40 dB.Compared with traditional approaches,the proposed method could improve the average PSNR by 1.23 dB.This effectively improves the compression performance of hyperspectral interference image.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第11期3155-3160,共6页 Spectroscopy and Spectral Analysis
基金 国家高技术研究发展计划(863计划)项目(863-2-5-1-13B)资助
关键词 干涉高光谱图像 光差程方向 3维光差程方向提升小波 快速层次交替最小二乘非负张量Tucker分解 Hyper-spectral interference image OPD 3D OPD lifting discrete wavelet transform Fast hierarchical alternating least squares nonnegative tensor Tucker decomposition
  • 相关文献

参考文献19

  • 1Wu Xiaolin, Zhai Guangyao, Yang Xiaokang, et al. IEEE Transactions on Image Processing, 2011, 20(1): 36.
  • 2Zhu Wei, Du Qian, Fowler James E. IEEE Geoseience and Remote Sensing Letters, 2011, 8(3) : 416.
  • 3Garima Chopra, Pal A K. IEEE Transactions on Image Processing, 2011, 20(1) : 270.
  • 4Li 13o, Yang Rui, J iang Hongxu. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49 (1) : 236.
  • 5Jiao Licheng, Wang Lei, Wu Jiaji, et al. IEEE Geoseienee and Remote Sensing Letters, 2011, 8(2) : 326.
  • 6Murthy Chandra R, Duni Ethan R, Rao Bhaskar D. IEEE Transactions on Signal Processing, 2011, 59(11) : 5390.
  • 7Fernando Garcia-Vilchez, Jordi Mufioz-Mari, Ian Blanes, et al. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2): 253.
  • 8Deng Chenwei, Lin Weisi, Lee Bu-sung, et al. IEEE Transactions on Multimedia, 2012, 14(2): 278.
  • 9Han Jingning, Saxena Ankur, Melkote Vinay, et al. IEEE Transactions on Image Processing, 2012, 21(4) : 1874.
  • 10Vassilis Kekatos, Georgios B Giannakis. IEEE Transactions on Image Processing, 2012, 59(7) : 3355.

同被引文献49

  • 1白璘,刘盼芝,李光.一种基于Contourlet变换的高光谱图像压缩算法[J].计算机科学,2012,39(S3):395-397. 被引量:6
  • 2QIAN S E. Hyperspectral data compression using a fast vector quantization algorithm[J]. IEEE Trans actions on Geoscience and Remote Sensing, 2004, 42 (8):1791 1798.
  • 3WU X I., MEMON N. Context-based, adaptive, lossless image coding[J].IEEE Transactions on Communications, 1997, 45(4) :437-444.
  • 4WU X L, MEMON N. Context based lossless inter- band compression extending CALIC [J]. IEEE 994-1001.
  • 5MAGI.I E, OLMO G, QUACCHIO E. Optimized onboard lossless and nealossless compression of hyperspectral data using CALIC [J]. IEEE Geosci ence and Remote Sensing Letters, 2004, 1 (1) : 21-25.
  • 6TATE S. Band ordering in lossless compression of multispectral images [C]. Proceedings of the IEEE Data Compression Conference, Utah , 1994:311-320.
  • 7ZHANG J, LIU G Z. An efficient reordering pre- diction-based lossless compression algorithm for hyperspectral images EJ. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2) :283-287.
  • 8KIELY A B, KLIMESH M A. Exploiting calibra- tion induced artifacts in lossless compression of hyperspectral imageryJ2. IEFE Transactions on Geoscience and Remote Sensing, 2009, 47 (8).. 2672 2678.
  • 9RIZZO F, CARPENTIERI B, MOTTA G, etal.. Low-complexity lossless compression of hyper spectral imagery via linear prediction EJ. IEEE Si,gna! Processing Letters, 2005, 12(2) :138 141.
  • 10AIAZZI B, ALPARONE L, BARONTI S, etal.. Crisp and fuzzy adaptive spectral predictions [or lossless and near-lossless compression of hyper- spectral imagery EJ. IEEE Geoscience and Remote Sensing; Letters, 2007, 4(4) :532 536.

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部