期刊文献+

量子密钥分发系统的实际安全性 被引量:3

The Practical Security of Quantum Key Distribution System
下载PDF
导出
摘要 量子密钥分发利用量子力学原理实现通信双方之间无条件安全的密钥传输而不被未经许可的第三方所窃听。目前,单光子QKD协议,纠缠光子对QKD协议,连续变量QKD协议等在理想的光源、信道、探测模型假设下已经被证明具有无条件安全性。然而,实际QKD系统所采用的非理想实际物理器件往往不完全符合理论安全性分析中的模型假设,这将导致比较严重的安全漏洞,从而降低实际QKD系统的安全性。为了抵御实际QKD系统非理想器件所引入的安全漏洞,可以从软件上改进QKD理论安全性分析(将实际QKD系统非理想特性纳入到安全性分析理论中),或从硬件上改进实际QKD系统(增加监控模块以抵御实际QKD系统安全漏洞)。对实际QKD系统光源、信道及探测端的安全漏洞进行了全面总结并给出针对各个安全隐患的抵御措施。 Quantum key distribution (QKD) enables to share a secret key between two parties in the pres- ence of an eavesdropper (Eve). The single-photon, entanglement-based and continuous variable QKD pro- tocols have proved to be unconditionally secure under ideal (source, channel, detection) assumptions. In practical QKD systems, the security assumptions are not completely satisfactory so that security loopholes exist. The unconditional security of practical QKD systems will be compromised if these loopholes are not included in general security analysis or no counter measures are made. To fight against the security loop- holes due to the imperfect physical devices in practical QKD systems, the theoretical security analysis in software, can be impraved which includes all the loopholes in QKD systems ; or the physical implementation of practical QKD system in hardware can be improved, where monitoring devices should be added to moni- tor the practical security loopholes. In this paper, the practical loopholes in QKD source, channel and de- tection are reviewed in detail, while counter-measures are given to fight against the loopholes.
出处 《中国电子科学研究院学报》 2012年第5期446-453,共8页 Journal of China Academy of Electronics and Information Technology
基金 保密通信重点实验室基金资助 基金号:9140C11010111C1104
关键词 量子密钥分发 理论安全性 实际安全性 量子黑客攻击 quantum key distribution theoretical security practical security quantum hacking
  • 相关文献

参考文献20

  • 1SCARANI V, BECHMANN-PASQUINUCCI H, CERF N J, et al. The Security of Practical Quantum Key Distribu- tion[J]. Rev. Mod. Phys. 2009,81(3) : 1 301-1 350.
  • 2SHOR P W, PRESKILL J. Simple Proof of Security of the BB84 Quantum Key Distribution Protocol[ J ]. Phys. Rev. Lett. 2000,85(2) : 441-445.
  • 3GOTrESMAN D, LO H K, LUTKENHAUS N, et al. Secur- ity of Quantum Key Distribution With Imperfect Devices [J]. Quantum Inf. Comput. 2004,4(5) : 325-360.
  • 4LO H K,ZHAO Y. Quantum cryptography[ J]. Encyclope- dia of Complexity and Systems Science(Springer New York), 2009,8 : 7 265-7 285.
  • 5LYDERSEN L. Practical Security of Quantum Cryptogra- phy[ D]. PHD Thesis, NTNU, 2011.
  • 6ZHAO Y, QI B, LO H K. Quantum Key Distribution with an Unknown and Untrusted Source [ J ]. Phys. Rev. A, 2008, 77 (5) : 052 327.
  • 7PENG X, JIANG H, XU B J, et al. Experimental Quan- tum-Key Distribution With an Untrusted Source [ J ]. Opt. Lett ,2008,33 ( 8 ) :2 077 -2 079.
  • 8PENG X, XU B, GUO H. Passive-Scheme Analysis for Solving the Untrusted Source Problem in Quantum Key Distribution[J]. Phys. Rev. A, 2010, 81(4) : 042 320.
  • 9XU B, PENG X, GUO H. Passive Scheme With A Photon- Number-Resolving Detector For Monitoring The Untrusted Source In A Plug-And-Play Quantum-Key-Distribution Sys- tem[J].Phys. Rev. A, 2010,82(4):042 301.
  • 10FUNG C-H F, QI B, TAMAKI K, et al. Phase-Remapping Attack in Practical Quantum-Key-Distribution Systems [ J ]. Phys. Rev. A, 2007,75(3) : 032 314.

同被引文献7

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部